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This paper describes methods that are important for the numerical evaluation
of certain functions that frequently occur in applied mathematics, physics
and mathematical statistics. This includes what we consider to be the basic
methods, such as recurrence relations, series expansions (both convergent and
asymptotic), and numerical quadrature. Several other methods are available
and some of these will be discussed in less detail. Examples will be given on
the use of special functions in certain problems from mathematical physics
and mathematical statistics (integrals and series with special functions).
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1. Introduction

Special functions arise in various branches of applied mathematics, math-
ematical statistics, physics, and engineering in the form of integrals, as
solutions of differential or difference equations, as integrands of integrals, as
terms of infinite series, and so on. In which form they arise is not very im-
portant for their numerical evaluation, because for all the common special
functions many analytic representations exist.
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In this paper we discuss elements of a selection of methods that we con-
sider to be the most important for designing algorithms for special functions.
Series expansions (convergent or asymptotic) are important, but usually the
parameter domain cannot be completely covered by convergent or asymp-
totic series. For the intermediate area we consider numerical quadrature
and recurrence relations to be the most useful tools.

We start the paper with hypergeometric series, mainly for notational pur-
poses, in particular the Gauss hypergeometric function 2F1(a, b; c; z). We
give information on the use of the several power series representations of
this function in the complex z-plane, and give an alternative power se-
ries for domains that cannot be reached when using power series for the
Gauss function.

The second basic method is numerical quadrature and we give an overview
of the simplest, but also most efficient, quadrature rule for special functions,
namely the trapezoidal rule. We consider this rule for both finite and infinite
intervals, and present the remainders of this rule in several forms. Because
the functions representing the integrands are always analytic in this area, we
can apply the powerful results of complex analysis. The effectiveness of the
rule and the elegant form of the remainders are mainly based on Cauchy’s
integral for analytic functions,

f(z) =
1

2πi

∫

C

f(ζ)

ζ − z
dζ,

where C is a circle around the point z inside the domain where f is ana-
lytic. Viewing this from the perspective of numerical quadrature, with some
imagination, we can say that Cauchy’s integral gives the relation between
an integral and just one function value, and this rule is exact.

Recurrence relations form the third important tool. We give the theory
that is of practical use for computing special functions, for example, the
Miller algorithm. We give details for Bessel functions, Legendre functions,
and Gauss hypergeometric functions.

In the remaining sections we give information on how to deal with so-
called uniform asymptotic expansions, in which the coefficients are usually
difficult to handle numerically. We use uniform asymptotic expansions for
the incomplete gamma function for the asymptotic and numerical inversion
of these functions for large parameters. In this way we describe a method
for the inversion of cumulative distribution functions, which is an important
topic in mathematical statistics.

In a final section we discuss two problems in which special functions play
a role in series expansions: a distribution function and the solution of a
singular perturbation problem.

Our approach in almost all discussions is to keep an eye out for the large-
parameter case. Many published algorithms work fine for small or medium-
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sized parameters. There are big challenges in extending existing algorithms,
or developing completely new algorithms, for large real or complex parame-
ters for rather common special functions. A second aspect of our approach
is to consider the stability of the numerical method as the main issue. In
particular, when several real or complex parameters occur, a strict error
analysis is far beyond the daily practice of efficient numerical algorithms.

Almost all functions considered in this paper are defined in the Handbook

of Mathematical functions (Abramowitz and Stegun 1964), which has now
been updated to form the Digital Library of Mathematical Functions, of
which the book and web version will be published in the very near future;
see also http://dlmf.nist.gov/.

For further properties of special functions we refer to Olver (1997), where,
just as in Wong (2001), information on asymptotic analysis can be found.
For an introduction to special functions, and for details of some examples
considered in this paper, we refer to Temme (1996). For a web link with
many definitions and descriptions of special functions, as well as for general-
ized functions such as the Fox H-function, the Meijer G-function, the Kampé
de Fériet function, the MacRobert E-Function, and the Appell functions,
we refer to http://mathworld.wolfram.com/.

The topics mentioned in this paper, and several other topics, will be
discussed extensively, with examples of software, in a new book entitled
Numerical Methods for Special Functions, written by Amparo Gil, Javier
Segura, and the present author. This book will be published by SIAM
in 2007.

2. Series expansions

Many special functions can be defined by power series that are of hyper-
geometric type. That is, they can be defined by power series of the form

f(z) =
∞∑

n=0

cnzn, (2.1)

where cn+1/cn is a rational function of n. Examples are

ez =

∞∑

n=0

zn

n!
, (1 + z)a =

∞∑

n=0

(
a

n

)
zn. (2.2)

A useful framework for working with these functions is the class of general-
ized hypergeometric functions. We define

pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
=

∞∑

n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

zn

n!
, (2.3)
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where (a)n is the Pochhammer symbol, also called the shifted factorial,
defined by

(a)0 = 1, (a)n = a(a + 1) · · · (a + n − 1) (n ≥ 1). (2.4)

In terms of the gamma function we have

(a)n =
Γ(a + n)

Γ(a)
, n = 0, 1, 2, . . . . (2.5)

The series in (2.3) defines an entire function in z if p ≤ q.
In the case p = q +1 the infinite series converges if |z| < 1, and defines an

analytic function in this disk. This function can be continued analytically
outside the disk, with a branch cut from 1 to +∞. Let

γq = (b1 + · · · + bq) − (a1 + · · · + aq+1). (2.6)

Then on the circle |z| = 1 the series (2.3) is absolutely convergent if Re γq >
0, convergent except at z = 1 if −1 < Re γq ≤ 0, and divergent if Re γq ≤ −1.

The binomial coefficient in (2.2) can be written in several forms,

(
a

n

)
=

Γ(a + 1)

n! Γ(a + 1 − n)
= (−1)n Γ(n − a)

n! Γ(−a)
= (−1)n (−a)n

n!
, (2.7)

and we find that the series in (2.2) can be written as

ez = 0F0

(−
− ; z

)
, (1 + z)a = 2F1

(−a, −
− ; −z

)
= 1F0

(−a

− ; −z

)
.

(2.8)
The second relation holds for |z| < 1. When a = m, a non-negative integer,
the binomial function in (2.2) becomes Newton’s binomial formula, with
only m + 1 terms. Also from (2.7) we see that (−m)n equals 0 when n ≥
m + 1. In general, the power series in (2.3) terminates when one of the aj

equals a non-positive integer. In that case p and q can be any non-negative
integer.

On the other hand, the pFq-function of (2.3) is not defined if one of the
bj equals a non-positive integer, except in the following typical case. Let
aj = −m and bj = −m − ℓ, with ℓ, m nonnegative integers. Then we have
(cf. (2.7))

(aj)n

(bj)n
=

(−m)n

(−m − ℓ)n
=





m!

(m − n)!

(m + ℓ − n)!

(m + ℓ)!
, m ≥ n,

0, m < n,

(2.9)
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Other examples of hypergeometric functions are the Bessel functions, with
the special case

Γ(ν + 1)(1
2
z)−νJν(z) = 0F1

( −
ν + 1

; −1
4
z2

)
= e−iz

1F1

(
ν + 1

2

2ν + 1
; 2iz

)
,

(2.10)
where Jν denotes the ordinary Bessel function of the first kind.

The 1F1-function is also denoted by

M(a, c, z) = 1F1

(
a

c
; z

)
, (2.11)

and M is also called the confluent hypergeometric function. This entire
function is a solution of the Kummer differential equation

zw′′ + (c − z)w′ − aw = 0. (2.12)

A second solution of this equation is denoted by U(a; c; z) and can be de-
fined by

U(a; c; z) =
1

Γ(a)

∫ ∞

0
e−ztta−1(1 + t)c−a−1 dt. (2.13)

This function cannot be written as a convergent pFq-function. However, see
(2.18).

The Airy function Ai(z), a solution of the differential equation w′′−zw=0,
is an entire function with power series representation

Ai(z) = c1f(z) − c2g(z),

f(z) = 1 + 1
3!

z3 + 1·4
6!

z6 + 1·4·7
9!

z9 + · · · ,

g(z) = z + 2
4!

z4 + 2·5
7!

z7 + 2·5·8
10!

z10 + · · · ,

c1 = 3−
2

3 Γ
(

2
3

)
, c2 = 3−

1

3 Γ
(

1
3

)
.

(2.14)

The functions f and g can be written as

f(z) = 0F1

(−
2
3

; 1
9
z3

)
, g(z) = z 0F1

(−
4
3

; 1
9
z3

)
. (2.15)

Remark 2.1. For large complex values with |ph z| < π, the Airy function
behaves as follows:

Ai(z) ∼ 1
2
π− 1

2 z−
1

4 e−
2

3
z

3
2 . (2.16)

We have Ai(5) = 0.000108344 . . . . This value cannot be obtained by using
the representation of Ai(z) in the first line of (2.14) and the power series for
f and g, working to 10 digits. This is a nice example in which the power
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series, although convergent for all z ∈ C, have a limited range of validity in
numerical algorithms.

Notation for asymptotic expansions

When γq of (2.6) satisfies γq ≤ −1 the definition in (2.3) has no meaning
because the series diverges. However, the notation may be used in an asymp-
totic sense. For example, the confluent hypergeometric function U(a; c; z)
defined in (2.13) has the large z asymptotic expansion

U(a; c; z) ∼ z−a
∞∑

n=0

(a)n(1 + a − c)n

n!
(−z)−n, |ph z| < 3

2
π, (2.17)

which we can write as

U(a; c; z) ∼ z−a
2F0

(
a, 1 + a − c

− ; −1

z

)
. (2.18)

This cannot be interpreted as an identity.

Remark 2.2. It is confusing that Maple 9.5 identifies the hypergeometric
function in (2.18) with the Kummer U -function. For example, the Maple
function KummerU gives the same numerical output as an evaluation based
on the hypergeometric function shown on the right-hand side of (2.18), even
when z is small.

2.1. The Gauss hypergeometric function

The Gauss hypergeometric function is the case p = 2, q = 1, that is,

2F1

(
a, b

c
; z

)
=

∞∑

n=0

(a)n(b)n

(c)n n!
zn = 1 +

ab

c 1!
z +

a(a + 1)b(b + 1)

c(c + 1) 2!
z2 + · · · ,

(2.19)
where c �= 0,−1,−2, . . . and |z| < 1. It is a solution of the hypergeometric
differential equation

z(1 − z)w′′ + [c − (a + b + 1)z]w′ − abw = 0. (2.20)

It is not difficult to verify that

z1−c
2F1

(
a − c + 1, b − c + 1

2 − c
; z

)
(2.21)

is a second solution of (2.20).
If Re (c − a − b) > 0, the value of the Gauss hypergeometric function at

z = 1 is given by

2F1

(
a, b

c
; 1

)
=

Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)
. (2.22)
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The power series for the Gauss hypergeometric function provides a simple
and efficient means for the computation of this function, when z is properly
inside the unit disk. The terms can easily be computed by the recursion in
the representation

2F1

(
a, b

c
; z

)
=

∞∑

n=0

Tn, Tn+1 =
(a + n)(b + n)

(c + n)(n + 1)
Tn, n ≥ 0, T0 = 1.

(2.23)

Other power series for the Gauss hypergeometric function

The power series in (2.19) converges inside the unit disk and for numerical
computations we can use only the disk |z| ≤ ρ < 1. Other power series are
available, however, to extend this domain.

The 2F1-function with argument z can be written in terms of one or two
other 2F1-functions with argument

1

z
, 1 − z,

1

1 − z
,

z

z − 1
,

z − 1

z
. (2.24)

For a useful set of relations we refer to Abramowitz and Stegun (1964,
p. 559) and Temme (1996, pp. 110 and 113).

When we restrict the absolute values of the quantities in (2.24) to the
bound ρ, with again 0 < ρ < 1, we find, writing z = x + iy,

|z| ≤ ρ, =⇒ x2 + y2 ≤ ρ2,
∣∣∣∣
1

z

∣∣∣∣ ≤ ρ, =⇒ x2 + y2 ≥ 1

ρ2
,

|1 − z| ≤ ρ, =⇒ (x − 1)2 + y2 ≤ ρ2,

1

|1 − z| ≤ ρ, =⇒ (x − 1)2 + y2 ≥ 1

ρ2
, (2.25)

∣∣∣∣
z

1 − z

∣∣∣∣ ≤ ρ, =⇒
(

x − ρ2

1 − ρ2

)2

+ y2 ≤ ρ2

(1 − ρ2)2
,

∣∣∣∣
z

1 − z

∣∣∣∣ ≥
1

ρ
, =⇒

(
x − 1

1 − ρ2

)2

+ y2 ≥ ρ2

(1 − ρ2)2
.

The domains defined by these inequalities do not cover the entire z-plane.
The points z = e±πi/3 do not satisfy these six conditions, for any ρ ∈ (0, 1).
When ρ → 1, the domain of points not satisfying the six conditions shrinks
to the exceptional points z = e±πi/3. See Figure 2.1, where these points are
indicated with black dots, for the cases ρ = 1

2 and ρ = 3
4 . In the light area

none of the inequalities of (2.25) hold.
To compute the 2F1-functions in a neighbourhood of the points z = e±πi/3

many other methods are available. One very useful method is discussed now.
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Figure 2.1. In the light domains none of the inequalities
of (2.25) are satisfied. For ρ → 1 these domains shrink to
the points e±πi/3, which are indicated by black dots.

Bühring’s analytic continuation formula

Bühring (1987) derived power series expansions of the Gauss function, which
enable computations near these special points. Bühring’s expansion reads
as follows. If b − a is not an integer, we have for |ph(z0 − z)| < π the
continuation formula

2F1

(
a, b

c
; z

)
=

Γ(c)Γ(b − a)

Γ(b)Γ(c − a)
(z0 − z)−a

∞∑

n=0

dn(a, z0)(z − z0)
−n (2.26)

+
Γ(c)Γ(a − b)

Γ(a)Γ(c − b)
(z0 − z)−b

∞∑

n=0

dn(b, z0)(z − z0)
−n,
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where both series converge outside the circle |z − z0| = max(|z0|, |z0 − 1|)
and the coefficients are given by the three-term recurrence relation

dn(s, z0) =
n + s − 1

n(n + 2s − a − b)

[
Pndn−1(s, z0) + Qndn−2(s, z0)

]
, (2.27)

where n = 1, 2, 3, . . . and

Pn = (n+s)(1−2z0)+(a+b+1)z0−c, Qn = z0(1−z0)(n+s−2), (2.28)

with starting values

d−1(s, z0) = 0, d0(s, z0) = 1. (2.29)

For the case that b − a is an integer, a limiting process is needed (as in the
next section). Details of the case a = b are given in Bühring (1987), where
different representations of the coefficients in the series of (2.26) are also
given.

When we take z0 = 1
2 then the series in (2.26) converge outside the circle

|z − 1
2 | = 1

2 , and both points z = e±πi/3 discussed earlier are inside the
domain of convergence.

Removable singularities

As mentioned earlier, there are several connection formulas that enable
computation of the 2F1− outside the unit disk. One example is

2F1

(
a, b

c
; z

)
=

Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)
2F1

(
a, b

a + b − c + 1
; 1 − z

)
(2.30)

+
Γ(c)Γ(a + b − c)

Γ(a)Γ(b)
(1 − z)c−a−b

2F1

(
c − a, c − b

c − a − b + 1
; 1 − z

)
.

For some combinations of the parameters a, b and c the relation in (2.30)
cannot be used straightforwardly. For example, when c = a+ b, the gamma
functions Γ(c − a − b) and Γ(a + b − c) are not defined, and the two Gauss
functions become the same. From an analytical point of view the limiting
form of (2.30) exists when c → a + b, but from a numerical point of view
instabilities arise when the relation in (2.30) is used in that case.

To see what happens in the limit c → a + b, we write c = a + b + ε. We
expand the Gauss functions in (2.30) in powers of 1 − z and obtain for the
nth term

Γ(a + b + ε)Γ(1 + ε)Γ(1 − ε)(1 − z)n

Γ(a)Γ(b)Γ(a + ε)Γ(b + ε)Γ(1 − ε + n)Γ(1 + ε + n)n!
f(ε), (2.31)

where

f(ε) =
1

ε
(Γ(a + n)Γ(b + n)Γ(1 + ε + n) (2.32)

− (1 − z)εΓ(a + ε + n)Γ(b + ε + n)Γ(1 − ε + n)).
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Taking the limit ε → 0 in f(ε), we find

2F1

(
a, b

a + b
; z

)
=

Γ(a + b)

Γ(a)Γ(b)
(2.33)

×
∞∑

n=0

(a)n(b)n

n! n!

(
2ψ(n + 1) − ψ(a + n) − ψ(b + n) − ln(1 − z)

)
(1 − z)n,

where ψ(z) is the logarithmic derivative of the gamma function:

ψ(z) =
Γ′(z)

Γ(z)
. (2.34)

This expansion holds for |z − 1| < 1 with |ph(1− z)| < π. Thus, there is, as
usual, a branch cut from z = 1 to z = +∞, and z is not on this cut. The
logarithm ln(1 − z) assumes its principal branch, which is real for z < 1.

Gauss hypergeometric functions: Concluding remarks

We conclude with the following observations.

• The power series (2.19) of the Gauss hypergeometric function is a very
important representation for numerical evaluations of this function.

• Non-trivial problems may arise, even for real values of the parameters
and argument.

• With the transformation formulas that write the function in terms of
functions with arguments shown in (2.24), we cannot reach all points
in the complex z-plane.

• These formulas may cause numerical difficulties for certain combina-
tions of the parameters a, b and c because of removable singularities
in the formulas.

• In Forrey (1997) many details are discussed for the numerical use of the
transformation formulas, and details of a Fortran program are given.

• Other instabilities will arise in the power series evaluation when a
and/or b and/or c assume large (complex) values.

• Some of the problems with these large parameters can be resolved by
using recurrence relations for these functions. See Section 4 for more
details, in particular Section 4.3.
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2.2. Chebyshev expansions of special functions

A function f that is continuous and of finite variation in [−1, 1] can be
expanded in terms of Chebyshev polynomials, and the expansion given by

f(x) = 1
2
c0 +

∞∑

k=1

ckTk(x), −1 ≤ x ≤ 1. (2.35)

By using the orthogonality of Tn(x), the coefficients of the expansion can
be given as integrals in the form

ck =
2

π

∫ 1

−1
f(x)Tk(x)(1 − x2)−1/2 dx (2.36)

=
2

π

∫ π

0
f(cos θ) cos kθ dθ ≈ 2

n

n∑

j=0

′′f

(
cos

πj

n

)
cos

πkj

n
,

where the approximation is for sufficiently large n. The double prime over
the summation indicates that the first and last terms are to be multiplied
by 1

2 . Chebyshev coefficients are thus Fourier cosine transform coefficients
of the function evaluated at non-uniformly spaced points.

As Clenshaw (1957) explained, the coefficients in a Chebyshev expansion
can also be obtained from recurrence relations when the function satisfies a
linear differential equation with polynomial coefficients; see also Gil, Segura
and Temme (2007b). All special functions of hypergeometric type satisfy
such a differential equation. However, for many special functions we can
obtain expansions in which the coefficients can be expressed in terms of
known special functions. As an example, we have (see Luke (1969a, p. 37))

J0(ax) =
∞∑

n=0

εn(−1)nJ2
n(a/2)T2n(x),

J1(ax) = 2
∞∑

n=0

(−1)nJn(a/2)Jn+1(a/2)T2n+1(x),

(2.37)

where −1 ≤ x ≤ 1 and ε0 = 1, εn = 2 if n > 0. The parameter a can
be any complex number. Similar expansions are available for J-Bessel func-
tions of any complex order, in which the coefficients are 1F2-hypergeometric
functions, and explicit recurrence relations are available for computing the
coefficients. For integer orders, the coefficients are a product of two J-Bessel
functions. Again, see Luke (1969a).

Remark 2.3. The complexity of computing the coefficients of the expan-
sions in (2.37) seems to be greater than the computation of the function
that has been expanded. In some sense this is true, but as we will see in the
next section, the coefficients in (2.37), and those of many other examples
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for special functions, satisfy linear recurrence relations, and the coefficients
satisfying such relations can usually be computed very efficiently by the
so-called backward recursion algorithm. Details for the second-order recur-
rence relation will be given in the next section.

Another example is the expansion for the error function:

ea2x2

erf(ax) =
√

πe
1

2
a2

∞∑

n=0

In+ 1

2

(
1
2
a2

)
T2n+1(x), −1 ≤ x ≤ 1, (2.38)

in which the modified Bessel function is used. Again, a can be any complex
number.

The expansions in (2.37) and (2.38) can be viewed as expansions near the
origin. Other expansions are available that can be viewed as expansions at
infinity, and these may be considered as alternatives for asymptotic expan-
sions of special functions. For example, for the confluent hypergeometric
U -function defined in (2.13) we have the convergent expansion in terms of
shifted Chebyshev polynomials T ∗

n(x) = Tn(2x − 1):

(ωz)aU(a; c; ωz) =
∞∑

n=0

Cn(z)T ∗
n(1/ω), z �= 0, |ph z| < 3

2
π, 1 ≤ ω ≤ ∞.

(2.39)
Furthermore, a, 1 + a − c �= 0,−1,−2, . . . . When equalities hold for these
values of a and c the Kummer function reduces to a Laguerre polynomial.
This follows from

U(a; c; z) = z1−cU(1 + a − c; 2 − c; z) (2.40)

and

U(−n; α + 1; z) = (−1)nn!Lα
n(z), n = 0, 1, 2, . . . . (2.41)

The expansion (2.39) is given in Luke (1969a, p. 25). The coefficients can
be represented in terms of generalized hypergeometric functions, in fact,
Meijer G-functions, and they can be computed from the recurrence relation

2Cn(z)

εn
= 2(n + 1)A1Cn+1(z) + A2Cn+2(z) + A3Cn+3(z), (2.42)

where b = a + 1 − c, ε0 = 1
2 , εn = 1(n ≥ 1), and

A1 = 1 − (2n + 3)(n + a + 1)(n + b + 1)

2(n + 2)(n + a)(n + b)
− 2z

(n + a)(n + b)
,

A2 = 1 − 2(n + 1)(2n + 3 − z)

(n + a)(n + b)
, (2.43)

A3 = −(n + 1)(n + 3 − a)(n + 3 − b)

(n + 2)(n + a)(n + b)
.
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Again, the coefficients satisfying this third-order recurrence relation can be
computed by a backward recursion algorithm. For applying the backward
recursion it is important to know that we have the normalization relation

∞∑

n=0

(−1)nCn(z) = 1, |ph z| < 3
2
π. (2.44)

This follows from

lim
ω→∞

(ωz)aU(a; c; ωz) = 1, and T ∗
n(0) = (−1)n, (2.45)

and from the asymptotic expansion given in (2.18). The standard backward
recursion scheme for computing the coefficients Cn(z) only works for |ph z| <
π. For ph z = ±π a modification seems to be possible; see Luke (1969a,
p. 26).

Although the expansion in (2.39) converges for all z �= 0 in the indicated
sector, it is better to avoid small values of the argument of the U -function.
Luke gives an estimate of the coefficients Cn(z) of which the dominant factor
that determines the speed of convergence is given by

Cn(z) = O
(
n2(2a−c−1)/3 e−3n

2
3 z

1
3
)
, n → ∞, (2.46)

and we see that large values of Re z
1

3 improve the convergence.
The expansion in (2.39) can be used for all special cases of the Kummer

U -function, that is, for Bessel functions (Hankel functions and K-modified
Bessel functions), for the incomplete gamma function Γ(a, z), with as special
cases the complementary error function and exponential integrals.

Example 2.4. (Airy function) For the Airy function Ai(x) we have the
relations

ξ
1

6 U(1
6
; 1

3
; ξ) = 2

√
πx

1

4 e
1

2
ξAi(x),

ξ−
1

6 U(−1
6
;−1

3
; ξ) = −2

√
πx− 1

4 e
1

2
ξAi′(x),

(2.47)

where ξ = 4
3x

3

2 . We take ω = (x/7)3/2 and z = 4
373/2 = 24.69 . . . .

To generate the coefficients with this value of z we determine the smallest
value of n for which the exponential factor in (2.46) is smaller than 10−15.
This gives n = 8. Next we generate, for both U -functions in (2.47), the
coefficients Cn(z) by using (2.42) in the backward direction. Details of this
method for second-order recurrence relations are given in Section 4.

We take starting values

C̃19(z) = 1, C̃20(z) = 0, C̃21(z) = 0. (2.48)
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Table 2.1. Coefficients of the Chebyshev expansion (2.51).

n Cn(z) Dn(z)

0 0.99727 33955 01425 1.00383 55796 57251
1 −0.00269 89587 07030 0.00380 27374 06686
2 0.00002 71274 84648 −0.00003 22598 78104
3 −0.00000 05043 54523 0.00000 05671 25559
4 0.00000 00134 68935 −0.00000 00147 27362
5 −0.00000 00004 63150 0.00000 00004 97977
6 0.00000 00000 19298 −0.00000 00000 20517
7 −0.00000 00000 00938 0.00000 00000 00989
8 0.00000 00000 00052 −0.00000 00000 00054
9 −0.00000 00000 00003 0.00000 00000 00003

We also compute for normalization

S =
18∑

n=0

(−1)nC̃n(z) = −0.902363242772764 10
25, (2.49)

where the numerical value is for the Ai-case. Finally we compute

Cn(z) = C̃n(z)/S, n = 0, 1, 2, . . . , 10. (2.50)

Using this scheme for the expansions (2.39) of both U -functions in (2.47),
we obtain the coefficients Cn(z) and Dn(z) of the expansions

2
√

πx
1

4 e
2

3
x3/2

Ai(x) ≈
9∑

n=0

CnT ∗
n

(
(7/x)3/2

)
,

−2
√

πx
1

4 e
2

3
x3/2

Ai′(x) ≈
9∑

n=0

DnT ∗
n

(
(7/x)3/2

)
,

(2.51)

for x ≥ 7, for which numerical values are given in Table 2.1.

3. Numerical quadrature

The many special functions that we meet in applications can usually be
defined by integral representations. For straightforward use these integrals
may not be the optimal choice for numerical quadrature. In many cases we
like to transform the integral into a different one with a better condition
for numerical computations. The condition can be improved by considering
two important points.
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• The original integral may behave badly because of strong oscillations,
and the new representation may be free of strong oscillations.

• The integral may be very large or very small (because of large param-
eters) and with the transformation a dominant factor has been placed
in front of the new integral.

For an example of the first point, consider the ordinary Bessel function of
the first kind with integer order, which can be defined as (Abramowitz and
Stegun 1964, equation 9.1.21)

Jn(z) =
1

2π

∫ π

−π
cos(z sin θ − nθ) dθ, n ∈ Z, z ∈ C. (3.1)

This function has, for fixed z, the asymptotic behaviour (Abramowitz and
Stegun 1964, 9.3.1)

Jn(z) ∼ 1√
2πn

(
ez

2n

)n

, n → ∞, (3.2)

and, for obtaining a high relative precision, the integral in (3.1) becomes
useless when n is large. There is no simple transformation possible for this
integral to extract the dominant asymptotic factor, and a different method
should be used, based on contour integrals in the complex plane, to obtain
an integral with a better condition.

In the case of the gamma function

Γ(z) =

∫ ∞

0
tz−1e−t dt, Re z > 0, (3.3)

a simple transformation t = zs (first assuming that z > 0) gives

Γ(z) = zze−z

∫ ∞

0
e−zφ(s) ds

s
, φ(s) = s − log s − 1, (3.4)

and the integral is now O(1/
√

z) as z → ∞.
Another important decision when using numerical quadrature for the

computation of special functions is the choice of the quadrature rule or
method. Because the integrals for special functions are always given in
terms of integrands that are analytic functions (except possibly at the end-
points, as in the case of (3.3) and (3.4) at the origin) the conditions for the
remainders are usually quite favourable.

In addition, we like to use an adaptive rule that can easily be applied
with any number of nodes and weights, without calculating these quantities
a priori. Of all known quadrature rules the trapezoidal rule is one of the
simplest to apply and it has the property that no nodes and weights have
to be computed. Moreover, when halving the stepsize for the nodes, earlier
function values can be used in the finer rule.
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3.1. The finite interval

We recall two forms of the n-point extended trapezoidal rule (Davis and
Rabinowitz 1984). Let n = 1, 2, 3, . . . and

h =
b − a

n
. (3.5)

Then the standard rule reads
∫ b

a
f(t) dt = 1

2
h[f(a) + f(b)] + h

n−1∑

j=1

f
(
jh

)
+ Rn, (3.6)

and the modified or shifted rule is given by

∫ b

a
f(t) dt = h

n−1∑

j=0

f
(
a + d + jh

)
+ Rd

n, 0 < d < h. (3.7)

In both cases the standard theory gives that the error terms have the form

Rn, Rd
n = −n h3

12
f ′′(ξ), (3.8)

for some point ξ ∈ (a, b), and for functions with continuous second derivative
on [a, b].

Because of this form of the remainder Rn the standard trapezoidal rule is
not a high precision rule, but under certain conditions the rule is extremely
accurate. We will describe these conditions and will give several examples
to show the efficiency of the rule.

We apply the trapezoidal rule to functions belonging to two classes, one
for finite and one for infinite intervals. For finite integrals the class is defined
as follows.

Definition 3.1. Let C∞
p ([a, b]) denote the class of C∞-functions

f : [a, b] �→ C, −∞ < a < b < ∞, (3.9)

with equal derivatives of all orders at a and b:

f (n)(a) = f (n)(b), n = 0, 1, 2, . . . . (3.10)

Remark 3.2. The functions of C∞
p ([a, b]) met in this paper can often

be continued analytically so as to be single-valued and regular in a region
D ⊂ C containing (a, b). They can be continued outside the interval [a, b]
to become C∞-periodic functions on R with period b − a.

As we will show later, the trapezoidal rule on [a, b] is extremely efficient
for functions belonging to C∞

p ([a, b]). The integrand cos(z sin θ−nθ) of (3.1)
belongs to C∞

p ([−π, π]). For moderate values of n and z the trapezoidal is
indeed very efficient, as follows from the following example.
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Table 3.1. Values of the remainders in the trapezoidal rule for the
Bessel function J0(x) by using (3.11) and (3.12). The rightmost
column gives the upper bound on |Rn| based on (3.13).

n Rn R
h/2

n bound of |Rn|

4 −0.1210(−000) 0.1210(−000) 0.9210(−000)
8 −0.4810(−006) 0.4810(−006) 0.2710(−005)

16 −0.1110(−021) 0.1110(−021) 0.5010(−021)
32 −0.1310(−062) 0.1310(−062) 0.5610(−062)
64 −0.1310(−163) 0.1310(−163) 0.5410(−163)

128 −0.5310(−404) 0.5310(−404) 0.2110(−403)

Example 3.3. (Bessel function J0(x)) We take (3.1) over the interval
[0, π]. Using (3.6) and (3.7) with d = 1

2h, we obtain

π J0(x) =

∫ π

0
cos(x sin t) dt = h + h

n−1∑

j=1

cos
[
x sin(jh)

]
+ Rn, (3.11)

π J0(x) =

∫ π

0
cos(x sin t) dt = h

n−1∑

j=0

cos
[
x sin

(
1
2
h + jh

)]
+ Rh/2

n , (3.12)

where h = π/n. We take x = 5 and have the results as shown in Table 3.1.

We observe that the error terms Rn and R
h/2
n are much smaller than

the upper bound that can be obtained from (3.8). Also, comparison of the
two remainders (and considering more digits) shows that the differences in

accuracy is negligible. In addition, Rn and R
h/2
n have opposite signs. This

phenomenon often occurs and will be explained later.
For more details we refer to Davis and Rabinowitz (1984). Luke (1969b,

p. 218) considered this Bessel function integral in detail, and from this ref-
erence and Krumhaar (1965) we derive an upper bound for Rn,

|Rn| ≤ 2ex/2 (x/2)2n

(2n)!
, (3.13)

which is quite realistic for the value of x we have chosen. For a different
representation of the remainder see Example 3.8.

Remainder estimate with higher derivatives

Other representations of the remainders which are completely different from
those in (3.8) are related to Euler’s summation formula; see Temme (1996,
Section 1.1.3).
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First we introduce a function B̃m(x) that is related to the generalized
Bernoulli polynomial Bm(x), which is defined by the generating function
relation

zexz

ez − 1
=

∞∑

n=0

Bm(x)

m!
zm, |z| < 2π. (3.14)

Explicit representations of Bm(x) are (see Abramowitz and Stegun (1964,
equation 23.1.17–23.1.18))

B2m(x) =
2(−1)m+1(2m)!

(2π)2m

∞∑

k=1

cos(2πkx)

k2m
, 0 ≤ x ≤ 1, m ≥ 1 (3.15)

and

B2m+1(x) =
2(−1)m+1(2m + 1)!

(2π)2m+1

∞∑

k=1

sin(2πkx)

k2m+1
, 0 ≤ x ≤ 1, m ≥ 0.

(3.16)
The expansion for B1(x) holds for 0 < x < 1.

The functions B̃m(x) are defined as the periodic continuations of Bm(x)
outside the basic interval [0, 1]. That is,

B̃m(x) =

{
Bm(x) if 0 ≤ x ≤ 1;

B̃m(x − 1) if x ∈ R.
(3.17)

In other words, B̃m(x), m ≥ 2, can also be defined by (3.15) and (3.16),
with x ∈ R.

Theorem 3.4. Suppose that f is differentiable in [a, b] up to and including
order 2m + 1. Then we have

Rn = −
m∑

k=1

h2kB2k

(2k)!

[
f (2k−1)(b) − f (2k−1)(a)

]
+ Rn,m, (3.18)

where

Rn,m = − h2m+1

(2m + 1)!

∫ b

a
f (2m+1)(t)B̃2m+1

(
s − a

h

)
ds, (3.19)

Proof. See Temme (1996, Exercise 1.7, p. 23).

This result corresponds to Euler’s summation formula on finite intervals,
in which a finite sum is expressed in terms of an integral plus terms and
remainder of the form just given.
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Corollary 3.5. (Euler’s summation formula) Suppose that f is dif-
ferentiable in [0, n] up to and including order 2m + 1, n ≥ 1. Then

n∑

j=0

f(j) =

∫ n

0
f(x) dx + 1

2
[f(0) + f(n)] (3.20)

+
m∑

j=1

B2j

(2j)!

[
f (2j−1)(n) − f (2j−1)(0)

]
+ Rn,m,

where

Rn,m =
1

(2m + 1)!

∫ n

0
f (2m+1)(x)B̃2m+1(x) dx. (3.21)

For the modified rule (3.7) we have the following result.

Theorem 3.6. Suppose that f is differentiable in [a, b] up to and including
order 2m + 1. Let d = 1

2h. Then

Rh/2
n = −

m∑

k=1

h2kB2k(
1
2)

(2k)!

[
f (2k−1)(b) − f (2k−1)(a)

]
+ Rh/2

n,m, (3.22)

where

Rh/2
n,m = − h2m+1

(2m + 1)!

∫ b

a
f (2m+1)(t)B̃2m+1

(
s − a

h
+

1

2

)
ds. (3.23)

Proof. The proof is as for Theorem 3.4 and also follows from Luke (1969b,
pp. 218–219) (with modifications and a few corrections).

Now, for f ∈ C∞
p [a, b] (see Definition 3.1), we see that all terms in the

sums of (3.18) and (3.22) vanish, and from (3.16) we infer

|Rn,m|, |Rh/2
n,m| ≤ 2

(
h

2π

)2m+1 ∫ b

a

∣∣f (2m+1)(t)
∣∣ dt, m = 1, 2, 3, . . . . (3.24)

This shows that for f ∈ C∞
p [a, b] the trapezoidal rule has order h2m+1 for

any m ≥ 1. Because (3.16) implies that

B̃2m+1(x + 1
2
) =

2(−1)m+1(2m + 1)!

(2π)2m+1

∞∑

k=1

(−1)k sin(2πkx)

k2m+1
, x ∈ R, (3.25)

we have also explained why the remainders Rn,m and R
h/2
n,m are almost equal,

and may have opposite signs.
Adding the two remainders we have

Rn,m + Rh/2
n,m = (3.26)

− h2m+1

(2m + 1)!

∫ b

a
f (2m+1)(t)

[
B̃2m+1

(
s − a

h

)
+ B̃2m+1

(
s − a

h
+

1

2

)]
ds,
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and using (3.16) and (3.25) we see that

B̃2m+1(x)+B̃2m+1(x+ 1
2
) =

1

22m

2(−1)m+1(2m + 1)!

(2π)2m+1

∞∑

k=1

sin(4πkx)

k2m+1
. (3.27)

It is obvious that when we add the standard trapezoidal rule (3.6) and
the modified rule (3.7) with d = 1

2h, we obtain the standard rule with n
replaced by 2n (and with h replaced by h/2). From (3.26) and (3.27) we
see that the sum of the remainders of both rules follows the same pattern.
From Table 3.1 we see that doubling the number of terms initially triples
the number of correct decimal digits.

Representation of the remainder based on Fourier series

In the next theorem we express the remainder of the trapezoidal rule in
terms of the Fourier series of f .

Theorem 3.7. Assume that f is continuous on [a, b] with an absolutely
and uniformly convergent Fourier series

f(x) =

∞∑

k=−∞
ake

iωkx, ak =
ω

2π

∫ b

a
f(x)e−iωkx dx, (3.28)

where ω = 2π/(b − a). Then Rn of (3.6) is given by

Rn = −(b − a)
∞∑

m=−∞
m�=0

eiωamnamn. (3.29)

For Rd
n of (3.7) we have

Rd
n = −(b − a)

∞∑

m=−∞
m�=0

eiωmn(a+d−h)amn. (3.30)

Proof. First consider Rn for a single Fourier term. That is, we consider
(3.6) with fk(x) = eiωkx. The integral vanishes, and consequently

Rh =
1

2
h[fk(b) − fk(a)] − heiωak

n∑

j=1

eiωhjk, (3.31)

where fk(a) = fk(b). From the well-known result

n∑

j=1

eijθ = e
1

2
i(n+1)θ sin(nθ/2)

sin(θ/2)
, (3.32)
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we easily find, with θ = ωhk = 2πk/n for m = ±1,±2, . . . ,

Rn =

{
0 if k �= mn,

− (b − a)eiωamn if k = mn.
(3.33)

Using this result for fk(x) = eiωkx for all terms in the Fourier series of (3.28),
we find the claim in (3.29). The result (3.30) for Rd

n follows easily.

When d = 1
2h in (3.30), we have

Rd
n = −(b − a)

∞∑

m=−∞
m�=0

(−1)meiωmnaamn. (3.34)

and when the Fourier expansion converges fast and we consider the first
term approximations m = ±1 of (3.29) and (3.30), we have

Rn ∼ −(b − a)
[
eiωanan + e−iωana−n

]
, Rh/2

n ∼ −Rn. (3.35)

Example 3.8. (Bessel function J0(x)) Consider the Fourier series

cos(z sinx) =
∞∑

k=−∞
J2k(z) cos(2kx) (3.36)

(Abramowitz and Stegun 1964, equation 9.1.42). We have a = 0, b = π,
ω = 2, ak = J2k(z), and J−k(z) = (−1)kJk(z). The integral of the left-hand
side equals πJ0(z) (see (3.12)). For the remainder we have

Rn = −2π
∞∑

m=1

J2mn(z). (3.37)

This gives an exact form of the remainder Rn of (3.11).

Contour integrals for the remainders

Representations of the remainders in (3.6) and (3.7) can be given in the form
of contour integrals in the complex plane in which f but no derivatives of f
are used. For details we refer to Takahasi and Mori (1970) and Mori (1974).

3.2. The infinite interval

For the trapezoidal rule on R, we consider, for a certain class of f ,
∫ ∞

−∞
f(t) dt =

∞∑

j=−∞
f(d + jh) + Rd(h), 0 ≤ d < h. (3.38)

This class is described as follows.
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Definition 3.9. Let

Ga = {z = x + iy | x ∈ R, |y| < a} (3.39)

be the strip in the complex domain of width 2a > 0. Let Ha denote the class
of bounded holomorphic functions f : Ga �→ C such that

∫∞
−∞f(x + iy) dx

converges, uniformly with respect to y ∈ [−a, a], with limx→±∞ f(x + iy) =
0, uniformly with respect to y ∈ [−a, a], and

M±a(f) =

∫ ∞

−∞
|f(x ± ia)|dx = lim

b↑a

∫ ∞

−∞
|f(x ± ib)|dx < ∞. (3.40)

For the remainder Rd(h) in (3.38) we have the following result.

Theorem 3.10. Let f ∈ Ha for some a > 0. Let h > 0 and 0 ≤ d < h.
Then

Rd(h) =

∫ ∞

−∞

f(x + iy)

1 − e−2πi(x+iy−d)/h
dx +

∫ ∞

−∞

f(x − iy)

1 − e2πi(x−iy−d)/h
dx, (3.41)

for any y ∈ (0, a).

Proof. The known proof is based on residue calculus for evaluating inte-
grals. Observe that

1

2πi

∫

∂Gy

f(z) cot(π(z − d)/h) dz = h
∞∑

j=−∞
f(d + jh), (3.42)

where ∂Gy is the boundary of Gy (see (3.39)), and the integration in (3.42)
is in the positive direction. Furthermore,

∫ ∞

−∞
f(x) dx +

∫ −∞

∞
f(x + iy) dx = 0 (3.43)

and ∫ ∞

−∞
f(x) dx +

∫ −∞

∞
f(x − iy) dx = 0. (3.44)

Combining these results we arrive at (3.41).

Corollary 3.11. Let f ∈ Ha for some a > 0 and let f be even (which is
not a restriction for integrals over R). Then Rd(h) in (3.38) can be bounded
in the following way:

|Rd(h)| ≤ e−πa/h

sinh(πa/h)
Ma(f), (3.45)

where Ma(f) is given in (3.40).

From (3.45) it follows that the error in the trapezoidal rule for small h
is O

(
exp(−2πa/h)

)
. Also, large values of a result in small errors, but the
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quantity Ma(f) may influence the error if a is large. Often, it is advisable
to choose h and a such that the right-hand side of (3.45) is minimized.

For example, when f has the form

f(x) = e−ωx2

g(x), ω > 0, g ∈ Ha, (3.46)

for some a > 0 and g an even function, (3.45) can be written as

|Rd(h)| ≤ eωa2−πa/h

sinh(πa/h)
Ma(g). (3.47)

If g allows, we may choose a value of a that makes the exponential function
very large. However, the function −2πa/h + ωa2, considered as a function
of a, is minimal for

a =
π

ωh
. (3.48)

When we can take this value (again, if g allows), and we suppose that
Ma(g) = O(1), we conclude that the error satisfies

|Rd(h)| ≤ Ce−π2/(ωh2), for some C > 0. (3.49)

Remark 3.12. In applications we may be interested in large values of ω.
If we apply the bound in (3.49) to make |Rd(h)| < ε, we see that h should
satisfy h ∼ π/

√
ω log(1/ε), which may be quite small, when ω is large. On

the other hand, we need to consider the rate of convergence of the series
in (3.38) with this value of h and ω for the function in (3.46). We see
that f(jh) = exp(−ωj2h2)g(jh) and that ωj2h2 = π2j2/ log(1/ε). So, the
value of j that should be taken to neglect terms in the infinite series is not
dependent on ω, when we take h as mentioned earlier. It is of some value
to know the stepsize h, but for efficiency the number of terms is the most
important issue. Of course, we can also take a new variable of integration
x = t/

√
ω when f has the form of (3.46). In that case the number of terms

in the series may again become independent of ω, and the singularities of g
are moving off the real axis as ω increases.

Another representation of the remainder

Another representation for Rd(h) can be obtained by using Poisson’s sum-
mation formula, which we write in the general form

h
∞∑

j=−∞
eijαf(d + jh) =

∞∑

k=−∞
F

(
2πk + α

h

)
e−id(2πk+α)/h, (3.50)

where F is the Fourier transform of f :

F (y) =

∫ ∞

−∞
f(x)eixy dx. (3.51)
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Details on the Poisson summation formula and condition of validity can be
found in Andrews, Askey and Roy (1999, Section D.4).

For α = 0 we obtain a representation for Rd(h) of (3.38):

Rd(h) =
∑

k �=0

F

(
2πk

h

)
e−2πikd/h. (3.52)

For even functions this becomes

Rd(h) = 2
∞∑

k=1

F

(
2πk

h

)
cos(2πkd/h). (3.53)

For functions f ∈ Ha this result can also be obtained by expanding in (3.41)
the integrands in geometric series with exponential functions.

Remark 3.13. Observe that, when the series converges fast, and the first
term gives a good estimate of the error, the remainders R0(h) and Rh/2(h)
are almost equal in modulus and have opposite sign.

Including series with derivatives

An interesting generalization of (3.38) is based on the idea of Hermite in-
terpolation. The result is summarized in the following theorem.

Theorem 3.14. Let f ∈ Ha, for some a > 0, be an even function. For
any even positive integer p, let numbers aq,p be determined by the identity

c0,p + c2,pz
2 + · · · + cp,pz

p =

1

2
p∏

q=1

(
(1 + (z/q))2

)
. (3.54)

Then, for h > 0,
∫ ∞

−∞
f(x) dx = Tp,h(f) + Rp,h(f), (3.55)

where

Tp,h(f) = h

p∑

q=0
q even

cq,p

(
h

2π

)q ∞∑

j=−∞
f (q)(jh), (3.56)

and Rp,h(f) is bounded as follows:

|Rp,h(f)| ≤ e−πa/h

sinhp+1(πa/h)
Ma(f). (3.57)

Proof. For a proof we refer to Kreß (1972).
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We give the rules with derivatives for p = 0, 2, 4:

T0,h(f) = h

∞∑

j=−∞
f(jh),

T2,h(f) = T0,h(f) +
h3

4π2

∞∑

j=−∞
f ′′(jh), (3.58)

T4,h(f) = T0,h(f) +
5h3

16π2

∞∑

j=−∞
f ′′(jh) +

h5

64π4

∞∑

j=−∞
f ′′′′(jh).

The coefficients cq,p, of which the first few appear in (3.58), can easily
be obtained as follows. By differentiating (3.38) with respect to d and by
using (3.52) for Rd(h), we obtain (by taking d = 0 afterwards) for even
functions f :

∫ ∞

−∞
f(x) dx = h

∞∑

j=−∞
f(jh) − 2

∞∑

k=1

F

(
2πk

h

)
,

0 = h
∞∑

j=−∞
f ′′(jh) +

8π2

h2

∞∑

k=1

k2F

(
2πk

h

)
,

0 = h

∞∑

j=−∞
f ′′′′(jh) − 32π4

h4

∞∑

k=1

k4F

(
2πk

h

)
,

(3.59)

and so on. By taking linear combinations of these equations we can elim-
inate F (2π/h), F (4π/h), . . . , and the coefficients for these linear combina-
tions are the numbers cq,p. This procedure reminds us of the Romberg
method, where terms in the error representation are eliminated by taking
linear combinations of the trapezoidal rule with h, h/2, h/4, . . . .

Example 3.15. (f(x) = e−x
2

) The remainder Rd(h) follows from (3.52)
and is given by

Rd(h) = −2
√

π
∞∑

k=1

e−π2k2/h2

cos(2πkd/h). (3.60)

The first term can be compared with the estimate in (3.49) when ω = 1. For
an accuracy of 10−10, Rd(h) is negligible for h smaller than (approximately)
π/

√
10 log(10) = 0.65 · · · . With this value we can estimate the number of

terms in the infinite sum in (3.38). The terms are negligible for j larger
than

√
10 log(10/h = 7.3 · · · .
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To see the effect of including the series with the second derivative, we
derive

Rp,h(f) = 2
√

π
∞∑

k=2

(k2 − 1)e−π2k2/h2

. (3.61)

To obtain the same accuracy as for (3.60) we can take h = 1.31 and neglect
terms in the infinite series for j larger than 3.66. Hence, by using the second
derivative the number of terms in the infinite series can be halved in this
example.

Example 3.16. (f(x) = 1/(1 + x2)) This case is only of theoretical in-
terest, because the series in (3.38) does not converge fast enough. In any
case, we have f ∈ Ha, a ∈ (0, 1), and we can evaluate

Rd(h) = −2π
∞∑

k=1

e−2πk/h cos(2πkd/h) = − 2π

e2π/h − 1
, (3.62)

where the last result holds when d = 0. So, although the rule is useless, the
error bound is perfect.

Slowly convergent integrals can become more rapidly convergent by using
simple transformations. In the present case we use x = sinh t and obtain

∫ ∞

−∞

dx

1 + x2
=

∫ ∞

−∞

dt

cosh t
. (3.63)

The new integrand belongs to Ha, a ∈ (0, 1
2π), and

Rd(h) = −2π
∞∑

k=1

cos(2πkd/h)

cos(π2k/h)
. (3.64)

Taking into account a pole singularity

Kress and Martensen (1970) consider the trapezoidal rule for Cauchy prin-
cipal value integrals of the form

∫ ∞

−∞

f(x)

x − ξ
dx, ξ ∈ R, (3.65)

with f ∈ Ha for some a > 0. Even more interesting is a generalization of
this taking ξ to be a complex number inside the strip Ga. The integral is
no longer interpreted as a Cauchy principal value. The pole at x = ξ gives
an extra residue term in the right-hand side of (3.38).

A standard integral for this case is the Hilbert transform of the Gaussian
(in physics, the plasma dispersion function)

w(z) =
1

πi

∫ ∞

−∞

e−t2

t − z
dt, Im z > 0, (3.66)
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which is an entire function after analytic continuation and is related to the
complementary error function. We have (see also (5.12))

w(z) = e−z2

erfc(−iz), z ∈ C. (3.67)

Matta and Reichel (1971) give several interesting examples for the com-
plementary error function and related functions, such as the Fresnel integral
and the Voigt functions. For the plasma dispersion function in (3.66) the
trapezoidal rule becomes

w(z) =
h

πi

∞∑

j=−∞

e−(jh)2

jh − z
+ θ

2e−z2

1 − e−2πiz/h
+ R(h), (3.68)

where R(h) = O(exp(−π2/h2) (cf. (3.49)) and

θ =





1 if Im z < π/h,
1
2 if Im z = π/h,

0 if Im z > π/h.

(3.69)

To avoid numerical instability for the case that z is close to jh for some
j, we can change h or use a shifted rule. However, when we combine the
particular j-term with the extra term in (3.68), the limit exists if z → jh.
For example, when z → 0, we have

lim
z→0

[
− h

πiz
+

2e−z2

1 − e−2πiz/h

]
= 1, (3.70)

which corresponds to w(0) = 1 (this value follows from (3.67)).
For Im z < 0 we can use

w(−z) = 2e−z2 − w(z), (3.71)

although (3.68) also holds when Im z ≤ 0.
By using (3.68) and by taking into account the combination of singular

terms or a proper choice of h, a uniform numerical algorithm for the function
w(z) and related functions can be constructed.

The function w(z) is important in uniform asymptotic expansions of cer-
tain integrals when a pole and saddle point are close together; see Sec-
tion 5.2, where the complementary error function is used in asymptotic
approximations of the incomplete gamma functions.

3.3. Contour integrals

We discuss examples in which the starting point is a contour integral in the
complex plane. We describe how simple transformations, inspired by the
saddle point method for contour integrals, produce new integrals that are
suitable for applying the trapezoidal rule on finite or infinite intervals.
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First we compare two simple integrals,

F (λ) =

∫ ∞

−∞
e−t2+2iλ

√
t2+1 dt (3.72)

and

G(λ) =

∫ ∞

−∞
e−t2+2iλt dt. (3.73)

When we compute F (λ) by using Maple 9.5 with Digits = 10, we obtain

F (10) = −0.1837516481 + 0.5305342893i. (3.74)

With Digits = 40, the answer is

F (10) = −0.1837516480532069664418890663053408790017 (3.75)

+ 0.5305342892550606876095028928250448740020i.

So, the first answer seems to be correct in all shown digits.
The integral in (3.73) is slightly different and we repeat the computations

for G(λ). Maple 9.5, Digits = 10, for λ = 10, gives

G(10) = −0.125767452010
−15. (3.76)

With Digits = 40, the answer is

G(10) = 0.1610
−43. (3.77)

The correct answer is

G(λ) =
√

πe−λ2

, (3.78)

and for λ = 10 we have

G(10) = 0.659366298910
−43. (3.79)

Maple can evaluate the exact answer, but we forced Maple to use numerical
quadrature to produce (3.76) and (3.77).

We also used Mathematica to compute G(10) and we received the message

NIntegrate failed to converge to prescribed accuracy after 7

recursive bisections in t near t = 2.9384615384615387.

Obtaining no result is better than obtaining a completely wrong result.
The lesson is: One should have some feeling about the computed result

when dealing with oscillatory integrals, otherwise a completely incorrect
answer can be accepted. And λ = 10 is not really large.

From some points of view the integrals F (λ) and G(λ) are quite different,
but an occasional user may not see this difference. The fact that Gλ) is so
small compared with F (λ) can be explained by observing that the ‘phase
function’ of F (λ), that is, −t2 + 2iλ

√
t2 + 1 has a stationary point (saddle
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point) inside the domain of integration (at t = 0), whereas the saddle point
of G(λ) (at t = iλ) is outside the domain.

By shifting the path upwards in the complex plane, through the saddle
point at t = iλ, or by just substituting t = s + iλ, we obtain

G(λ) = e−λ2

∫ ∞

−∞
e−s2

ds. (3.80)

Now we have the dominant factor in front of the integral, and the integral
(in this case we know its answer) can be calculated easily by numerical
quadrature, say, by using the trapezoidal rule.

This procedure will be carried out in several less trivial cases in which
a given integral is transformed by selecting a new contour in the complex
plane such that, for large values of parameters, a dominant factor is taken
in front of the new integral. We use the standard methods of asymptotic
analysis (saddle point methods) of which details can be found in Wong
(2001).

The evaluation of contour integrals is also important in the numerical
inversion of Laplace transforms, when the initial vertical line of integration
can be deformed into the left half-plane (Talbot 1979, Murli and Rizzardi
1990, Rizzardi 1995, Trefethen, Weideman and Schmelzer 2005, Weideman
2005).

Example 3.17. (The reciprocal gamma functions) The Maclaurin
series of the exponential function, ew =

∑∞
n=0 wn/n!, implies the Cauchy

integral
1

n!
=

1

2πi

∮
es

sn+1
ds, (3.81)

where the integral can be taken over a circle in the complex plane. A more
general form of this integral is Hankel’s loop integral for the reciprocal
gamma function:

1

Γ(z)
=

1

2πi

∫

L

es

sz
ds, (3.82)

where L is a contour as shown in Figure 3.1. It runs from −∞ (with
ph s = −π), encircles the origin in the positive direction, and terminates at
s −∞, now with ph s = +π. The many-valued function s−z is assumed to
be equal to 1 at s = 1.

We consider z > 0 and substitute s = zt and obtain

1

Γ(z)
=

ezz1−z

2πi

∫

L
ezφ(t) dt, φ(t) = t − 1 − log t, (3.83)

where the contour is the same as in Figure 3.1. Compare this with (3.3).
We choose a special contour on which the imaginary part of φ(t) = C, where
C is a constant. In addition, we take this contour through the saddle point
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ph s = +π

ph s = −π

L

Figure 3.1. Hankel contour for the integral in (3.82).

of the integrand at t = 1, where φ′(t) = 0. Since φ(1) = 0 we have C = 0.
Writing t = reiθ, we find that the equation Imφ(t) = r sin θ − θ = 0 is
satisfied when the polar coordinates of t satisfy

r =
θ

sin θ
, −π < θ < π. (3.84)

On this path, the steepest descent path, the the function φ(t) of (3.83) is
real and negative. The standard way to deal with integrals of this form in
asymptotics is the transformation

φ(t) = −1
2
w2, (3.85)

in which the lower branch of the path corresponds to w < 0 and the upper
part to w > 0. Locally at t = 1 we have

w = i(t − 1)
[
1 − 1

3
(t − 1) + · · ·

]
. (3.86)

The transformation (3.85) gives

1

Γ(z)
=

ezz1−z

2π

∫ ∞

−∞
e−

1

2
zw2

g(w) dw, (3.87)

where

g(w) =
1

i

dt

dw
=

tw

i(1 − t)
= 1 + 2

3
iw − 1

12
w2 + · · · . (3.88)

The integrand in (3.87) is of the type (3.46), and we like to know the sin-
gularities of g in order to determine the strip Ga of Definition 3.9 around
the real axis. The conformal mapping defined in (3.85) is regular at t = 1,
but t = exp(2πin), n = ±1,±2, . . . , which are important because of the
many-valued logarithm in φ(t), give singular points. These points corre-
spond to w-values of which those with n = ±1 are closest to the real w-axis.
The singularities that define the strip Ga satisfy 1

2w2 = ±2πi, which have

imaginary parts equal to
√

2π
.
= 2.51. We also see that the series in (3.88)

has radius of convergence 2
√

π
.
= 3.54
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Table 3.2. Values of h and the remainders in the trapezoidal rule for the
reciprocal gamma function 1/Γ(z) by using (3.87) and (3.38). The last
column gives the sum of the relative errors to show that the remainders
are almost equal with opposite sign.

z h rel. error, d = 0 rel. error, d = 1

2
h sum of rel. errors

1 0.926 −0.4110(−7) 0.4110(−7) 0.2310(−13)
2 0.656 0.4610(−9) −0.4610(−9) −0.3010(−14)
3 0.536 0.4410(−9) −0.4410(−9) 0.6010(−14)
4 0.466 0.3910(−9) −0.3910(−9) 0.2010(−14)
5 0.415 0.3610(−9) −0.3610(−9) 0.1810(−13)
6 0.376 0.3310(−9) −0.3310(−9) 0.1110(−13)
7 0.350 0.3110(−9) −0.3110(−9) −0.2510(−13)
8 0.327 0.3010(−9) −0.3010(−9) 0.1010(−13)
9 0.309 0.2910(−9) −0.2910(−9) −0.1810(−13)

10 0.293 0.2810(−9) −0.2810(−9) −0.5510(−13)

In Table 3.2 we give details on the computation of 1/Γ(z) by using (3.87)
and (3.38) with d = 0 and d = 1

2h. We have chosen (see Remark 3.12)

h = π/
√

ω log(1/ε), ω = 1
2z with ε = 10−10, and sum the series for j =

−j0,−j0 +1, . . . , j0−1, j0, where j0 follows from the smallest j that satisfies
exp(−ωj2h2) < ε. For all z-values, j0 = 8 (as explained in Remark 3.12,
j0 will not depend on z). We observe that the values of the relative errors
R0(h)Γ(z) − 1 and Rh/2(h)Γ(z) − 1 are rather uniform for the values of z
shown, and that they have opposite signs. The sum of these errors shows
that they are nearly equal in modulus. Computations are done in Maple
with Digits = 15.

Remark 3.18. The representation in (3.87) can also be used when z is
complex. When |ph z| < 1

2π the integral remains convergent, and the expo-

nential function exp(−1
2zw2) is no longer real on the path. By turning the

path of integration over an angle less than 1
4π we can repair this. We can

even control convergence for |ph z| < π. However, when we turn the path of
integration, the singularities of g mentioned earlier approach the real axis,
and this makes the trapezoidal rule less efficient.

Because t, as a function of w, is not explicitly known in terms of standard
functions, the function g of (3.88) needs an inversion procedure to compute
the complex number t, when w ∈ R is given. In terms of the Lambert
W -function, which is the inverse function of W eW , we can write t(w) =
−W (− exp(1

2w2 − 1)).



410 N. M. Temme

It may be of interest to use a different representation, in which such
inversion is not needed. This can be found as follows.

When we use this parametrization of the contour and integrate with re-
spect to θ, we have

dt =
d(reiθ)

dθ
dθ = [i + h(θ)] dθ, (3.89)

where h(θ) = (cos θ sin θ − θ)/ sin2 θ is an odd function of θ. It follows that

1

Γ(z)
=

ezz1−z

2π

∫ π

−π
e−zΦ(θ) dθ, (3.90)

where

Φ(θ) = −Re φ(t) = 1 − θ cot θ + log
θ

sin θ
. (3.91)

To evaluate Φ(θ) for small values of θ we have

Φ(θ) = 1
2
θ2 + 1

36
θ4 + 1

405
θ6 + 1

4200
θ8 + 1

42525
θ10 + · · · . (3.92)

All terms in the series are positive, as follows from the general form

Φ(θ) =

∞∑

n=1

(−1)n+1 2n + 1

2n

22nB2n

(2n)!
θ2n, |θ| < π, (3.93)

where B2n are the Bernoulli numbers, and (−1)n+1B2n > 0.

The integrand belongs to C∞
p ([−π, π]) (see Definition 3.1), with vanishing

derivatives of all orders at the end points ±π.

Example 3.19. (Bessel functions Jν(x)) In Example 3.3 we have seen
that for the Bessel function J0(x) a very simple integral can be used to
apply the trapezoidal rule. For general integer values we can use the more
general integral in (3.1), but when n is large the many oscillations make
the representations very unstable. In the present example we consider an
integral representation that can be used to compute Jν(x) for ν ≥ x, and
large values of the parameters cause no problems.

We use the contour integral

Jν(x) =
1

2πi

∫

C
ex sinh t−νt dt, (3.94)

where C starts at ∞−iπ and terminates at ∞+iπ; see Temme (1996, p. 222).
On this contour oscillations will occur, but we will select a special contour
that is free of oscillations for the case x ≤ ν.

We write

ν = x cosh µ, µ ≥ 0. (3.95)
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The saddle point of

x sinh t − νt = x(sinh t − t cosh µ) (3.96)

occurs at t = µ, and at this saddle point the imaginary part of x sinh t− νt
equals zero.

A path free of oscillations (a steepest descent path through the saddle
point) can be described by the equation

Im (x sinh t − νt) = 0. (3.97)

Writing t = σ + iτ we obtain for the path the equation

cosh σ = cosh µ
τ

sin τ
, −π < τ < π, (3.98)

and on this path we have

Re (x sinh t − νt) = x(sinhσ cos τ − σ cosh µ). (3.99)

Integrating with respect to τ , using dt/ dτ = ( dσ/ dτ + i) (where dσ/ dτ
is an odd function of τ), we obtain

Jν(x) =
1

2π

∫ π

−π
ex(sinh σ cos τ−σ cosh µ) dτ, 0 < x ≤ ν. (3.100)

The integrand is analytic and vanishes with all its derivatives at the end
points of the interval [−π, π].

When ν ≫ x the Bessel function becomes very small and we can put the
value of the integrand at τ = 0 as the dominant part in front of the integral.
This gives the representation

Jν(x) =
ex(sinh µ−µ cosh µ)

2π

∫ π

−π
e−xψ(τ) dτ, (3.101)

where

ψ(τ) = sinhµ − sinh σ cos τ + (σ − µ) cosh µ. (3.102)

For small values of τ we have the expansion

ψ(τ) = 1
2
sinh µτ2 +

2 cosh2 µ + 3

72 sinhµ
τ4 + O

(
τ6

)
. (3.103)

We see that this breaks down when µ → 0, that is, x ↑ ν. This happens
because the the phase function x sinh t − νt = x(sinh t − t) (when x = ν)
has a cubic character at t = 0. When µ = 0 the expansion of ψ(τ) reads

ψ(τ) =
4
√

3

27
τ3 +

8
√

3

14175
τ7 + O

(
τ9

)
. (3.104)

In fact, the representation in (3.101) should not be used when x and ν
are nearly equal. For all µ > 0 the contour defined by (3.98) cuts the real
t-axis under a right angle; when µ = 0 this angle is 1

3π.
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Remark 3.20. The change of behaviour of the integrand when ν ∼ x is
related to the turning point character of Jν(x) when argument and order
are equal. The function

√
zJν(νz) satisfies the differential equation

w′′ +

[
ν2

(
z2 − 1

z2

)
− 1

4z2

]
w = 0. (3.105)

In particular, when ν is large the solutions of this equation change behaviour
from z < 1 (monotonic character) to z > 1 (oscillatory character). The Airy
function is the main approximant in the large ν asymptotic approximation
that holds in a neighbourhood of z = 1. See Olver (1997, Chapter 11).

To avoid this type of discontinuous behaviour of the contour we may
choose a different path, which should run through the saddle point and end
in the valleys when t → ∞± iπ, but for which the parametrization does not
become discontinuous when µ ↓ 0. For example, we can take

σ = µ +
τ2

π2 − τ2
, −π < τ < π. (3.106)

When using this path the imaginary part of the phase function x sinh t− νt
will not vanish identically, but the oscillations of the integrand will have
only a minor influence on the stability of the representation. That is, the
function ψ(τ) in (3.101) will become different, but the dominant factor in
front of the integral can still be extracted from the integrand.

When x > ν (the oscillatory case), the Bessel function can be represented
in a similar way, now by using two integrals (coming from the Hankel func-
tions). First we consider

H(1)
ν (x) =

1

πi

∫ ∞+πi

−∞
ex sinh t−νt dt, (3.107)

now with ν = x cos µ, 0 < µ < 1
2π. The saddle points are now complex, and

the relevant saddle point is iµ. The path of steepest descent follows from
the equation

Im
[
sinh(σ + iτ) − cos µ(σ + iτ)

]
= sinµ − µ cos µ, (3.108)

which gives the equation

cosh σ =
τ cos µ + sinµ − µ cos µ

sin τ
, 0 < τ < π, (3.109)

where σ ≤ 0 when τ ≤ µ and σ ≥ 0 when τ ≥ µ. Using this path we obtain

H(1)
ν (x) =

eix(sinµ−µ cos µ)

πi

∫ π

0
e−xψ(τ)g(τ) dτ, (3.110)
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where

ψ(τ) = σ cos µ − sinh σ cos τ, g(τ) =
dt

dτ
=

dσ

dτ
+ i. (3.111)

After computing the Hankel function H
(1)
ν (x) the result for Jν(x) follows

from Jν(x) = Re [H
(1)
ν (x)] (which holds when x > 0 and ν ∈ R).

Example 3.21. (Modified Bessel functions Kν(x)) For the modified
Bessel functions the representations are quite simple when we consider real
parameters. In that case there is no turning point.

First consider the function (we take x > 0 and ν ∈ R)

Kν(x) =

∫ ∞

0
e−x cosh t cosh νt dt = 1

2

∫ ∞

−∞
e−x cosh t+νt dt. (3.112)

This integral has no oscillations and we can apply the trapezoidal rule if
we wish without further steps. When the parameters are large it may be
convenient to scale by extracting the dominant factor; we also like to have
the peak at the origin, as in previous examples. We write

ν = x sinh µ, (3.113)

and see that the integrand of the second integral in (3.112) has a saddle
point at t = µ. We put t = µ + s and obtain

Kν(x) = 1
2
e−x(cosh µ−µ sinh µ)

∫ ∞

−∞
e−xψ(s) ds, (3.114)

where

ψ(s) = coshµ(cosh s − 1) + sinhµ(sinh s − s). (3.115)

By evaluating the Fourier integrals in (3.53), we obtain, for the remainder
in

Kν(x) = 1
2
he−x(cosh µ−µ sinh µ)

∞∑

j=−∞
e−xψ(jh) + R0(h), (3.116)

the series

R0(h) = −
∞∑

m=−∞
m�=0

Kν+2πim/h(x). (3.117)

Example 3.22. (Modified Bessel functions Iν(x)) For the modified
Bessel function Iν(z) the starting point is

Iν(x) =
1

2πi

∫

C
ex cosh t−νt dt, (3.118)

where the contour C starts at ∞−iπ and ends at ∞+iπ. The relevant saddle
point is t = µ, where µ is as in (3.113). We write t = σ + iτ . The path of
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steepest descent through t = µ is given by Im [cosh(σ +iτ)−µ(σ +iτ)] = 0,
which gives the parametrization

sinhσ =
µτ

sin τ
, −π < τ < π. (3.119)

We put the dominant exponential factor in front of the integral and obtain

Iν(x) =
ex(cosh µ−µ sinh µ)

2π

∫ π

−π
e−xψ(τ) dτ, (3.120)

where

ψ(τ) = coshµ − cosh σ cos τ + (σ − µ) sinh µ. (3.121)

For small values of τ we have

ψ(τ) =
2µ2 + 3 + µ sinh µ

6 cosh µ
τ2 + O

(
τ4

)
. (3.122)

For ν = 0, that is, µ = 0, this representation reduces to

I0(x) =
1

2π

∫ π

−π
ex cos τ dτ, (3.123)

which is a standard integral for this function (Abramowitz and Stegun 1964,
equation 9.6.16).

3.4. Some numerical aspects

We discuss the main aspects in error handling of the trapezoidal rule (3.7)
and (3.38) for the finite and infinite interval.

The size of the remainders Rd
n and Rd(h)

In many cases where special functions are involved we can estimate these
remainders. In the simple Examples 3.15 and 3.16, the series clearly show
what happens. Also, in other cases we can compute or estimate the re-
mainders, for example by evaluating the Fourier transforms needed in the
series (3.52) or (3.53); see Example 3.21 where the remainder is given in
(3.117) as an infinite sum of K-Bessel functions with complex order. For
these functions asymptotic estimates are available.

The truncation error when taking the relevant terms of the series

This point is very relevant for infinite series. The smallest integer number
j0, such that in

I(f) =

∫ ∞

−∞
f(x) dx = h

[
f(0) + 2

j0∑

j=1

f(d + jh)

]
+ Sj0 , (3.124)
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assuming that f is even, |Sj0 | or |Sj0/I(f)| is smaller than the desired accu-
racy ε, is called the number of relevant function evaluations corresponding
to h and ε.

In the finite case, as in Example 3.3, all terms in the sum (3.6) or (3.7)
may be relevant, but sometimes the integrand in the finite integral becomes
exponentially small at the end points (see (3.90)), and in that case the
number of relevant function evaluations is important, and there is no need
to compute all the terms in the finite sum.

How to choose h?

Another point is a stopping criterion when testing whether the number h
is small enough. When it is difficult to obtain useful and realistic analytic
bounds for the remainders it may be necessary during computations to verify
if the number h is small enough. Let us denote the series in (3.38) by

Td(h) = h
∞∑

j=−∞
f(d + jh). (3.125)

We can compare T0(h) and Th/2(h) for a given h. When they agree within
our desired accuracy, we are finished, and can take one of the two as our
final result. However, as follows from Example 3.17 (see also Table 3.2), it
is better to add both results, because

T0(
1
2
h) = 1

2

[
T0(h) + Th/2(h)

]
, (3.126)

and the error in this result may be much smaller than the desired accuracy.
So, because of the fast convergence of the trapezoidal rule we may com-

pute too many terms, and to control efficiency a different stopping criterion
may be useful.

In the case of a finite interval the same fast convergence may occur, and to
control both accuracy and efficiency a simple stopping criterion is a matter
of trial and error for a certain problem.

In many problems that we have tested, in which, say, N correct decimal
digits had to be obtained, we have verified whether h is sufficiently small to
ensure that ∣∣T0(h) − Th/2(h)

∣∣ < ε, ε = 10−
3

4
N , (3.127)

and used (3.126) for the final result. In many cases this stopping criterion
gave the results we wanted.

3.5. Other aspects of numerical quadrature

We mention other quadrature methods and conclude with further observa-
tions.
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Gauss quadrature

Gauss quadrature is an efficient method for evaluating integrals. It is based
on choosing the zeros of a class of orthogonal polynomials as the interpo-
lation nodes. Usually, these zeros have to be precomputed, as well as the
weights, which are also associated with the polynomials. This makes the
method less attractive in adaptive algorithms, where we like to increase the
number of nodes as often as we please. On the other hand, Gauss quadra-
ture has proven to have its merits for certain types of integrals, and the
underlying theory is very elegant. In a recent book, Gautschi (2004), the
aspects of computation and approximation of orthogonal polynomials, and
in particular Gauss quadrature rules, are discussed in great detail.

Filon’s method for oscillatory integrals

In previous examples we have discussed how to deal with integrals on con-
tours in the complex plane and how, particularly when the parameters are
large, strong oscillations can be handled by choosing appropriate contours
through saddle points.

In this section we discuss another method of how to deal with oscillatory
integrals. For further discussions we refer to Blakemore, Evans and Hyslop
(1976), where a number of related methods for the evaluation of oscillatory
integrals over infinite ranges are compared.

Oscillatory integrals of the form

I(f ; p) =

∫ b

a
f(x)eipx dx (3.128)

can be evaluated using Filon’s method (Filon 1928). The method, especially
useful when p is large, is based on the piecewise approximation of f(x) on
the interval of integration by low-degree polynomials. We give the following
details.

The interval of integration [a, b] is divided into 2N equally spaced sub-
intervals

a = x0 < x1 < · · · < x2N = b, xk = a + hk, k =
b − a

2N
. (3.129)

On each subinterval [x2k−2, x2k] the function f(x) is locally approximated
by a polynomial Pk(x) of degree at most 2, and the corresponding integral
on that interval ∫ 2k

2k−2
Pk(x)eipx dx (3.130)

is evaluated exactly. This gives

I(f ; p) ≈ h
{

iα
(
eipaf(a) − eipbf(b)

)
+ βE2N + γE2N−1

}
, (3.131)
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with

θ3α = θ2 + θ sin θ cos θ − 2 sin2 θ,

θ3β = 2
[
θ(1 + cos2 θ) − 2 sin θ cos θ

]
, (3.132)

θ3γ = 4
[
sin θ − θ cos θ

]
,

and

E2N =
N∑

k=0

′′f(x2k)e
iwx2k , E2N−1 =

N∑

k=1

f(x2k−1)e
iwx2k−1 . (3.133)

The double prime over the first summation indicates that the first and last
terms are to be multiplied by 1

2 .
The quantities α,β, and γ defined in (3.132) need to be recomputed when

we change h, or for different p. When θ is small the right-hand sides in
(3.132) should be expanded in powers of θ to preserve accuracy. We have

α = 2
45

θ3 − 2
315

θ5 + 2
4725

θ7 + · · · ,

β = 2
3

+ 2
15

θ2 − 4
105

θ4 + 2
567

θ6 + · · · , (3.134)

γ = 4
3
− 2

15
θ2 + 1

210
θ4 − 1

11340
θ6 + · · · .

It can be easily verified that for p = 0, that is, θ = 0, Filon’s method
becomes Simpson’s extended rule. For this quadrature rule we refer to
Abramowitz and Stegun (1964, equation 25.4.6).

For recent investigations of Filon-type quadrature in connection with
highly oscillatory integrals with extensive numerical and asymptotic analy-
sis, see Iserles (2004, 2005) and Iserles and Nørsett (2005).

Asymptotic expansion

We consider integrals of the form

I(f ; p) =

∫ ∞

0
f(x)eipx dx, (3.135)

in which p may be a complex parameter, and f is a function sufficiently
smooth on (0,∞) and with sufficient decay at ∞ to ensure convergence of
the integral.

First we make some observations concerning integrals of the type (3.135).
Earlier we gave the details of Filon’s method, which can be used on a finite
interval.

When derivatives of f are available and when p is large we can first inte-
grate by parts to obtain the main contribution to the integral. In this way,

I(f ; p) =
i

p
f(0) − 1

p2
f ′(0) − 1

p2

∫ ∞

0
f ′′(x)eipx dx, (3.136)
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which may be continued in order to obtain higher approximations, as far as
the smoothness and growth conditions of the derivatives of f allow.

Odd or even functions

When f is an even function, all its odd derivatives at the origin vanish;
hence, all terms with even powers of p−1 vanish when we continue the ex-
pansion in (3.136). For example, when we take f(x) = 1/(1 + x2), we have,
when p > 0,

I(f ; p) =

∫ ∞

0

eipx

1 + x2
dx = 1

2
πe−p + i

∫ ∞

0

sin(px)

1 + x2
dx, (3.137)

in which the real part of I(f ; p) is exponentially small and the imaginary
part is O(p−1) when p is large. So, computing I(f ; p) of (3.135) by using
a quadrature rule when f is a real even function may give a large relative
error (but a small absolute error) in the real part of I(f ; p), and similarly
when f is an odd function.

Analytic functions

When f is slowly decreasing at ∞, convergence of a quadrature rule may be
rather poor. When f is analytic in the right half-plane, and p is positive, we
may investigate if turning the path of integration up into the complex plane
is possible. In that case convergence of the integral and of the quadrature
rule may be improved.

Orthogonal polynomials

For integrals of the form

I(f ; p) =

∫ 1

−1
eipxf(x) dx, (3.138)

we can try to expand f(x) in terms of Legendre polynomials, that is,
f(x) =

∑∞
n=0 cnPn(x), and obtain

I(f ; p) =

√
2π

p

∞∑

n=0

(−i)ncnJn+ 1

2

(p), (3.139)

in terms of spherical Bessel functions; see Temme (1996, equation (6.64)).
In the same manner we can expand the function f(x) in

I(f ; p) =

∫ 1

−1
eipx f(x)√

1 − x2
dx (3.140)

in terms of Chebyshev polynomials, f(x) =
∑∞

n=0 cnTn(x), and obtain

I(f ; p) = π

∞∑

n=0

incnJn(p), (3.141)
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in terms of ordinary Bessel functions, which follows from Temme (1996,
equation (9.20)).

For further examples on the use of orthogonal polynomials (also on infinite
intervals), see Patterson (1976/77).

More general forms

Oscillatory integrals also occur in the form

I(f ; p) =

∫ ∞

0
f(x)Φ(xp) dx, (3.142)

where Φ is an oscillatory function. For example, in the case of Bessel func-
tions we have the class of Hankel transforms

Iµ,ν(f ; p) =

∫ ∞

0
xµ−1f(x)Jν(px) dx, (3.143)

which play an important role in applied mathematics. In Wong (1982) it is
explained how quadrature rules of Gauss type can be constructed for these
integrals and also for integrals of the type (3.135). In the latter case Wong
gives a modification of the Gauss–Laguerre rule, and the method works for
functions f that are analytic in the right half-plane.

Reducing the interval

Because the exponential function in (3.135) is periodic, with interval of
periodicity [0, 2π/p], we can write I(f ; p) in the form

I(f ; p) =
1

p

∫ 2π

0
eitSp(t) dt, Sp(t) =

∞∑

k=0

f

(
2πk + t

p

)
. (3.144)

Another summation method

When in (3.135) the exponential function is written in terms of the sine
and cosine function, the resulting integrals can written as alternating series
of positive and negative subintegrals that are computed individually (for
example, when f is positive). A similar method can also be used for (3.142)
and (3.143) by using subintervals with endpoints the zeros of Φ(x) or Jν(px).
See Longman (1956).

Convergence acceleration schemes, for instance Levin’s or Weniger’s trans-
formations (see Weniger (1989)), can be used when evaluating the series.
For further information see Clendenin (1966), Lyness (1985) and Lucas and
Stone (1995).

3.6. Other curious exercises with integrals

Needless to say, it will be evident that Maple and Mathematica are great
tools when working with special functions, and in other areas of pure and
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applied mathematics. Numerical quadrature with these computer algebra
packages can be very efficient, although, as mentioned at the beginning of
Section 3.3, the user may not always get what he or she wants. We consider
another example, a simple integral, where Maple and Mathematica give
answers that are confusing and/or wrong (perhaps different results might
have been obtained using later versions of Maple and Mathematica).

Consider

F (u) =

∫ ∞

0
eu it dt

t − 1 − i
, u > 0. (3.145)

Numerical quadrature gives F (2) = −0.934349 − 0.70922i.
Mathematica 4.1 gives for u = 2, in terms of the Meijer G-function,

F (2) = πG2,1
2,3

(
0, 1

2

0, 0, 1
2

; 2 − 2i

)
. (3.146)

For workers in special functions this may be a useful answer, but for those
not familiar with this rather generalized hypergeometric function some con-
fusion may arise. However, Mathematica can evaluate this answer numeri-
cally, and gives the result

F (2) = −0.547745 − 0.532287i,

which is not the same as that obtained earlier by using numerical quadra-
ture.

Next, ask Mathematica to evaluate F (u), that is, with a general argument.
Surprisingly, the answer is much simpler:

F (u) = eiu−uΓ(0, iu − u), (3.147)

in terms of the incomplete gamma function. Again, asking Mathematica to
evaluate numerically this result for u = 2, we obtain

F (2) = −0.16114 − 0.355355i.

So, we have three numerical results:

F1 = −0.934349 − 0.70922i,

F2 = −0.547745 − 0.532287i, (3.148)

F3 = −0.16114 − 0.355355i.

Observe that F2 = (F1 + F3)/2. So, in some sense these answer have some-
thing in common. It turns out that F1 is correct.

Turning to Maple 9.5, we obtain

F (u) = eiu−uEi(1, iu − u), (3.149)
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in terms of the exponential integral. We can write this in terms of the
incomplete gamma functions1 and obtain the same result (3.147) as Math-
ematica. This is the wrong answer.

Next, Maple 9.5, with u = 2:

F (2) = e2i−2Ei(1, 2i − 2) + 2πie2i−2. (3.150)

We see that the answer has an extra term now, and, in Maple, numerical
evaluation gives

F (2) = −0.9343493872 − 0.7092195102i, (3.151)

which is the correct answer.
The extra term in (3.150) equals 2πi times the residue of the integrand of

(3.145) at the pole t = 1 + i. This residue arises when we turn the path of
integration in (3.145) to the positive imaginary axis. The residue is missing
in the answer F3 of (3.148) and in F2 it is taken into account incorrectly
(only πi times the residue is added, which is why F2 = (F1 + F3)/2).

The confusing part is that both Maple and Mathematica also give different
symbolic answers for F (u) and F (2).

3.7. Numerical quadrature: Concluding remarks

The first paper that mentioned the superiority of the trapezoidal rule for the
integration of analytic functions on an infinite interval seems to be Goodwin
(1949). Many papers worked out this idea, of which we mention important
contributions from the Japanese school: Takahasi and Mori (1970, 1971,
1973/74) and Mori (1974). In these papers several transformations are
discussed and error terms for a number of quadrature rules are represented
as derivative-free contour integrals in the complex plane.

The trapezoidal rule may give the exact value of the integral when h is
less than some fixed value. For example (Rice 1973), if m and n are positive
integers such that m − n = 0, or 2, 4, . . . , the integral

∫ ∞

−∞

sinm x

xn
dx (3.152)

is exactly integrated to the trapezoidal rule sum when h < 2π/m (h can
equal 2π/m when n ≥ 2). The proof follows from the fact that all of the
terms in the series (3.53) for the remainder vanish. Rice gives several other
interesting examples.

1 Maple’s convert function gives convert(F (u),GAMMA) = eiu−uΓ(0, iu − u); the nota-
tion Ei(a, z) is not widely used in the standard works for special functions. A better
notation is Ea(z), the generalized exponential integral.
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For further papers on the use of the trapezoidal rule on finite and infinite
intervals, also with special transformations and interesting examples, we
mention Elliott (1998/99), Eggert and Lund (1989), Haber (1977), Squire
(1976a, 1976b) and Weideman (2002).

4. Recurrence relations

Consider the recurrence relation

yn+1 + anyn + bnyn−1 = 0, n = 1, 2, 3, . . . , (4.1)

where an and bn are given, with bn �= 0. Many special functions of mathe-
matical physics satisfy such a relation. Equation (4.1) is also called a linear
homogeneous difference equation of the second order.

In analogy with the theory of differential equations, two linearly indepen-
dent solutions fn, gn exist in general, with the property that any solution
yn of (4.1) can be written in the form

yn = Afn + Bgn, (4.2)

where A and B do not depend on n. We are interested in the special case
that the pair {fn, gn} satisfies

lim
n→∞

fn

gn
= 0. (4.3)

Then, for any solution (4.2) with B �= 0, we have fn/yn → 0 as n → ∞.
When B = 0 in (4.2), we call yn a minimal solution; when B �= 0, we call yn

a dominant solution. When we have two initial values y0, y1, assuming that
f0, f1, g0, g1 are known as well, then we can compute A and B. That is,

A =
g1y0 − g0y1

f0g1 − f1g0
, B =

y0f1 − y1f0

g0f1 − g1f0
. (4.4)

The denominators are different from 0 when the solutions fn, gn are linearly
independent.

When we assume that the initial values y0, y1 are to be used for generating
a dominant solution, then A may, or may not, vanish; B should not vanish:
y0f1 �= y1f0. When, however, the initial values are to be used for the
computation of a minimal solution, then the much stronger condition y0f1 =
y1f0 should hold. It follows that, in this case, one and only one initial value
can be prescribed; the other one follows from the relation y0f1 = y1f0. In the
numerical approach this leads to well-known instability phenomena for the
computation of minimal solutions. The fact is that, when our initial values
y0, y1 are not specified to an infinite precision, and consequently B does not
vanish exactly, the computed solution (4.2) always contains a fraction of
gn, the dominant solution. Hence, in the long run, our solution yn does not
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behave as a minimal solution, although we assumed that we were computing
a minimal solution. This happens even if all further computations are done
exactly.

In applications it is important to know whether a given equation (4.1)
has dominant and minimal solutions. Often this can be easily concluded
from the asymptotic behaviour of the coefficients an and bn. The following
useful theorem is due to Perron and taken from Gautschi (1967), which
paper contains a wealth of information.

Theorem 4.1. (Perron) Assume that for large values of n the coeffi-
cients an, bn behave as follows:

an ∼ anα, bn ∼ bnβ , ab �= 0, (4.5)

with α and β real; assume that t1, t2 are the zeros of the characteristic
polynomial Φ(t) = t2 + at + b with |t1| ≥ |t2|.
[1] If α > 1

2β then the difference equation (4.1) has two linearly indepen-

dent solutions yn,1 and yn,2, with the property

yn+1,1

yn,1
∼ −anα,

yn+1,2

yn,2
∼ − b

an

β−α

, n → ∞. (4.6)

[2] If α = 1
2β then the difference equation (4.1) has two linearly indepen-

dent solutions yn,1 and yn,2, with the property

yn+1,1

yn,1
∼ t1n

α,
yn+1,2

yn,2
∼ t2n

α, n → ∞, (4.7)

assuming that |t1| > |t2|. If |t1| = |t2| then we have

lim sup
n→∞

[
|yn|(n!)−α

] 1

n = |t1| (4.8)

for each non-trivial solution of (4.1).

[3] If α < 1
2β then

lim sup
n→∞

[
|yn|(n!)−β/2

] 1

n =
√
|b| (4.9)

for each non-trivial solution of (4.1).

Proof. For a proof we refer to the cited literature in Gautschi (1967) or to
Elaydi (2005).

In case [1] and the first part of case [2] fn = yn,2 is a minimal solution of
(4.1). In addition, in the first part of [2],

lim
n→∞

yn+1

nαyn
= tr, r = 1 or r = 2, (4.10)
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where r = 2 holds for the minimal solution and r = 1 for any other solution.
To verify this, we derive from [1]:

yn+1,2

yn+1,1

/
yn,2

yn,1
∼ b

a2
nβ−2α, n → ∞. (4.11)

The right-hand side converges to 0, since β−2α < 0. It follows that yn,2/yn,1

converges to 0. In the first part of [2] we have

yn+1,2

yn+1,1

/
yn,2

yn,1
∼ t2

t1
, n → ∞. (4.12)

Since |t1| > |t2| we again conclude that yn,2/yn,1 converges to 0.
The second part of case [2] and case [3] of the theorem do not give in-

formation on the minimal and dominant solutions. As can be seen from
the examples below we then need extra asymptotic information about the
solutions of the difference equation (4.1). For the general asymptotic theory
we refer to Wong and Li (1992b) and (1992a).

Example 4.2. (Bessel and Legendre functions) We give the details
of important recurrence relations for special functions and the stability as-
pects including the maximal and minimal solutions of the particular relation.
The quantities fn, gn denote the minimal and maximal solutions, respec-
tively. For recent computer programs for Legendre functions and toroidal
harmonics (a subclass of the Legendre functions) we refer to Gil and Segura
(1997, 2000).

(1) Bessel functions.
Recurrence relation:

yν+1 −
2ν

z
yν + yν−1 = 0, z �= 0. (4.13)

Solutions:

fν = Jν(z), gν = Yν(z). (4.14)

This is covered by case [1] of the theorem, with

a = −2

z
, α = 1, b = 1, β = 0. (4.15)

Claim of the theorem:

fν+1

fν
∼ z

2ν
,

gν+1

gν
∼ 2ν

z
. (4.16)

Known asymptotic behaviour:

fν ∼ 1√
2πν

(
ez

2ν

)ν

, gν ∼ −
√

2

πν

(
ez

2ν

)−ν

, ν → ∞. (4.17)
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Similar results hold for the recurrence relation for the modified Bessel
functions

yν+1 +
2ν

z
yν − yν−1 = 0, z �= 0, (4.18)

with solutions Iν(z) (minimal) and eπiνKν(z) (dominant).

(2) Legendre functions, recursion with respect to the order.
Recurrence relation:

ym+1 +
2mz√
z2 − 1

ym + (m + ν)(m − ν − 1)ym−1 = 0. (4.19)

Solutions:

fm = Pm
ν (z), gm = Qm

ν (z), (4.20)

where

Re z > 0, ν ∈ C ν �= −1,−2, . . . , z �∈ (0, 1]. (4.21)

This is covered by case [2] of the theorem, with

a =
2z√

z2 − 1
, α = 1, b = 1, β = 2, (4.22)

t1 = −
√

z + 1

z − 1
, t2 =

1

t1
, |t1| > 1 > |t2|. (4.23)

Claim of the theorem:

lim
m→∞

fm+1

mfm
= t2, lim

m→∞
gm+1

mgm
= t1. (4.24)

(3) Legendre functions, recursion with respect to the degree.
Recurrence relation:

yn+1 − z
2n + 2ν + 1

n + ν − µ + 1
yn +

n + ν + µ

n + ν − µ + 1
yn−1 = 0. (4.25)

Solutions:

fn = Qµ
ν+n(z), gn = Pµ

ν+n(z), Re z > 0. (4.26)

This is covered by case [2] of the theorem, with

a = −2z, α = 0, b = 1, β = 0, (4.27)

t1 = z +
√

z2 − 1, t2 =
1

t1
, |t1| > 1 > |t2|. (4.28)

Claim of the theorem:

lim
n→∞

fn+1

fn
= t2, lim

n→∞
gn+1

gn
= t1. (4.29)
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4.1. Miller’s algorithm

From the previous discussion, it appears that the numerical computation of
the minimal solution of a recurrence relation (4.1) with initial values f0 and
f1 is quite problematic. One has to accept that the results are completely
wrong after a few recursion steps. Of course, it depends on the required
absolute or relative accuracy as to how much risk can be incurred, but in
general one should be very careful.

From the asymptotic behaviour of the minimal and a dominant solution,
one can usually conclude whether recursion for the minimal solution is dan-
gerous.

We give details of an algorithm for computing a sequence of values

f0, f1, . . . , fN (4.30)

of a minimal solution; N is a non-negative integer. Obviously, we can apply
(4.1) in the backward direction; in that case fn becomes a dominant solution
and gn the minimal solution. Then we need two initial values fN and fN−1.
Miller’s algorithm does not need these values, and uses a smart idea for
the computation of the required sequence (4.30). The algorithm works for
many interesting cases and gives an efficient method for computing the
sequence (4.30).

Assume we have a relation of the form

∞∑

n=0

λnfn = s, s �= 0. (4.31)

The series should be convergent and λn and s should be known. The series in
(4.31) plays a role in normalizing the required minimal solution. The series
may be finite; we only require that at least one coefficient λn is different
from zero. When just one coefficient, say λj , is different from zero, we
assume that the value fj is available.

In Miller’s algorithm a starting value ν is chosen, ν > N , and a solution

{y(ν)
n } of (4.1) is computed with the false initial values

y
(ν)
ν+1 = 0, y(ν)

ν = 1. (4.32)

The right-hand sides may be replaced by other values; at least one value
should be different from zero. In some cases a judicious choice of these values
may improve the convergence of the algorithm. The computed solution, with
(4.32) as initial values, is a linear combination of the solutions fn and gn

introduced earlier. A simple computation gives

y(ν)
n =

gν+1fn − fν+1gn

gν+1fν − fν+1gν
, n = 0, 1, . . . , ν + 1. (4.33)
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This can be verified by checking the relations in (4.32). We write this in
the form

y(ν)
n = pνfn + qνgn. (4.34)

We observe that y
(ν)
n /pν = fn− [fν+1/gν+1]gn, and from (4.3) it follows that

lim
ν→∞

y
(ν)
n

pν
= fn, 0 ≤ n ≤ N. (4.35)

Apparently, when ν is large enough, an approximation of fn can be obtained

from the quantities y
(ν)
n and pν . However, in general, pν is not known.

At this moment the normalizing relation (4.31) becomes of interest. We
compute

s(ν) =
ν∑

n=0

λny(ν)
n , f (ν)

n =
s

s(ν)
y(ν)

n . (4.36)

Replacing y
(ν)
n in the series with pνfn, on account of (4.35), we then obtain

pν ∼ s(ν)/s. It follows that we can consider f
(ν)
n as an approximation to

fn, if ν is large enough. That is, we assume that the circumstances are
favourable, and that we can conclude that

fn = lim
ν→∞

f (ν)
n , n = 0, 1, . . . , N. (4.37)

This claim will be founded by introducing extra conditions.
From (4.36) we obtain for the relative error (when fn �= 0)

ε(ν)
n =

f
(ν)
n − fn

fn
=

s/s(ν) y
(ν)
n − fn

fn
=

s(pν + qνgn/fn) − s(ν)

s(ν)
. (4.38)

We rewrite this in the form

ε(ν)
n =

σν − ρν+1/ρn + τν

1 − σν − τν
(4.39)

with

σν =
1

s

∞∑

m=ν+1

λmfm, ρn =
fn

gn
, τν =

ρν+1

s

ν∑

m=0

λmgm. (4.40)

When introducing (4.31) we assumed that the series converges. Hence,
σν → 0 as ν → ∞. Also (see (4.3)), we assumed that ρν → 0. From this

we infer that the relative error ε
(ν)
n of (4.39) converges to zero (as ν → ∞),

if and only if τν converges to zero. Under this final condition, the limit in
(4.37) holds.

For the numerical part of the method it is important to obtain an estimate

of ε
(ν)
n for large values of ν. In many cases it is not easy to obtain a strict
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estimate; usually some terms in (4.40) can be approximated by replacing
the series with their dominant terms. Taking in the first series only the first
term, and in the second series the final term, we obtain

σν ≃ 1

s
λν+1fν+1, τν ≃ 1

s
ρν+1λνgν . (4.41)

With these approximations (4.39) reads

ε(ν)
n ≃ 1

s
λν+1fν+1 +

fν+1

gν+1

λνgν

s
− fν+1

gν+1

gn

fn
(4.42)

≃ 1

s
λν+1fν+1 −

fν+1

gν+1

gn

fn
,

since the second term on the first right-hand side is usually less important
than the first term. A further step is to replace in this estimate n by N ,
because, when the Nth element in the sequence in (4.30) is accurate, the
situation will only improve for the remaining values. Reasoning in this way,
we finally arrive at

ε(ν)
n ≃ 1

s
λν+1fν+1 −

fν+1

gν+1

gN

fN
. (4.43)

By using asymptotic estimates of the dominant and minimal solutions, the
estimation of ν can be executed, perhaps numerically. The estimate of the
error in (4.43) reflects two aspects of the algorithm for favourable conver-
gence. The first term on the right-hand side of (4.43) indicates that the
series in (4.31) should converge quickly. The second term indicates that the
extent of dominance of gn with respect to fn is very significant.

In Gautschi (1967) this algorithm is discussed in great detail (in a slightly
different form). Gautschi estimates the starting point of the backward re-
cursion by using asymptotic estimates of the special functions involved.
In Olver (1967) a direct numerical approach is used for obtaining a good
starting point ν. Olver also considers inhomogeneous recurrence equations.
An excellent monograph for the numerical aspects of recurrence relations,
including Miller’s algorithm, is Wimp (1984).

Example 4.3. (Computing In(x)) In Bickley, Comrie, Miller, Sadler
and Thompson (1952) the above method was introduced for computing the
modified Bessel functions In(x). The recurrence relation for these functions
reads

In+1(x) +
2n

x
In(x) − In−1(x) = 0. (4.44)

A normalizing condition (4.31) is

ex = I0(x) + 2I1(x) + 2I2(x) + 2I3(x) . . . . (4.45)
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Table 4.1. Computing the modified Bessel functions In(x) for x = 1
by using (4.44) in the backward direction. The underlined digits in
the third column are correct.

n yn before normalization yn
.
= In(1) after normalization

0 2.2879 4930010(+8) 1.26606 58780110(−0)

1 1.0213 1761010(+8) 5.65159 10410610(−1)

2 2.4531 4080010(+7) 1.35747 66979410(−1)

3 4.0061 2900010(+6) 2.21684 24928810(−2)

4 4.9434 0000010(+5) 2.73712 02216010(−3)

5 4.9057 0000010(+4) 2.71463 15601210(−4)

6 4.0640 0000010(+3) 2.24886 61476110(−5)

7 2.8900 0000010(+2) 1.59921 82988710(−6)

8 1.8000 0000010(+1) 9.96052 91971010(−8)

9 1.0000 0000010(+0) 5.53362 73317210(−9)

10 0.0000 0000010(+0) 0.00000 00000010(−0)

That is, s = ex, λ0 = 1, λn = 2 (n ≥ 1). We take x = 1 and initial values
(4.32) with ν = 9 and obtain the results given in Table 4.1.

The rightmost column in Table 4.1 is obtained by dividing the results of
the middle column by (see (4.35) and (4.36))

p9 ≃
9∑

n=0

λny(9)
n /e1 = 1.807132898610(+8). (4.46)

When we take N = 5, which means we want to compute the sequence
I0(1), I1(1), . . . , I5(1), we see that these quantities are computed with at
least 10 correct decimal digits. For the present values of x, ν, N the estimate
of the relative error εν

n of (4.43) is 0.2010
−9, which is quite realistic.

4.2. Recurrence relations and continued fractions

For computing minimal solutions of three-term recurrence relations, the
continued fraction for the ratios of consecutive solutions is also a useful
tool. The basic result to be considered is Pincherle’s theorem.

Theorem 4.4. (Pincherle) Given a three-term recurrence relation

yn+1 + bnyn + anyn−1 = 0, (4.47)

then the continued fraction
−ak

bk+

−ak+1

bk+1+
. . . (4.48)
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converges if and only if the recurrence relation possesses a minimal solu-
tion. Furthermore, if fn is a minimal solution, then the continued fraction
converges to fk/fk−1.

Proof. See, for instance, Gautschi (1967) and Gil et al. (2007b).

4.3. The Gauss hypergeometric family

Legendre functions are are already considered in Example 4.2 and are a
special case of the Gauss hypergeometric functions, which are defined by
the series given in (2.19) for |z| < 1. By using integral representations
and connection formulas this function can be continued analytically on and
outside the unit circle, with the general exception of the point z = 1, which
is usually a branch point. In this way the standard domain for this function
is |ph(1 − z)| < π with a branch cut from 1 to +∞.

There are many formulas (contiguous relations) that connect a Gauss
function with parameters a, b, c to two other functions with parameters a±
1, b±1, c±1. Of special interest are the recurrence relations for the functions

yn(z) = 2F1

(
a + ε1n, b + ε2n

c + ε3n
; z

)
(4.49)

where εj = 0,±1 are fixed (not all εj equal to zero). Each family yn satisfies
a second-order linear recurrence relation (difference equation) of the form

Anyn−1 + Bnyn + Cnyn+1 = 0. (4.50)

All combinations of εj in (4.49) constitute 26 cases of recursions but because
of symmetry relations and functional relations for the Gauss functions, many
of these 26 cases can be transformed into each other.

For example, we have the trivial symmetry relation

2F1

(
a, b

c
; z

)
= 2F1

(
b, a

c
; z

)
. (4.51)

In addition, the following relations can be used (Abramowitz and Stegun
1964, p. 559)

2F1

(
a, b

c
; z

)
= (1 − z)−a

2F1

(
a, c − b

c
;

z

z − 1

)
, (4.52)

2F1

(
a, b

c
; z

)
= (1 − z)−b

2F1

(
c − a, b

c
;

z

z − 1

)
, (4.53)

2F1

(
a, b

c
; z

)
= (1 − z)c−a−b

2F1

(
c − a, c − b

c
; z

)
. (4.54)
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By using these four relations it is possible to reduce the set of 26 recursions
to just five cases from which the properties of the remaining 21 recursions
can be obtained (by using other considerations we can eliminate one of these
cases, but here we consider the five cases).

For each of the five basic recursions, the following points have to be
considered.

(1) To find the domains in the z-plane where we can identify minimal and
dominant solutions of the recurrence relation (luckily, these domains
do not depend on a, b, or c). These domains follow from Theorem 4.1,
and are defined by by the equation |t1| = |t2|, where t1 and t2 are the
zeros of the characteristic polynomial.

(2) To identify a pair of linearly independent solutions of each recursion in
each domain. This means that we want to know which functions, next
to 2F1(a+ε1n, b+ε2n; c+ε3n; z) for a given set εj , are solutions of the
same recurrence relation, and which of these are minimal or dominant.

These points are considered in great detail in the recent papers by Gil,
Segura and Temme (2006, 2007a), of which the second paper contains the
full proofs. It is quite remarkable that a systematic study of the set of
recursions for the Gauss function was neglected in the literature so far.
Of course, an important subclass, the Legendre functions, was considered
earlier (Gil and Segura 1997, 2000); Gautschi (1967) has paid attention to
recursions for the incomplete beta functions, which are also a special case.
Furthermore, Wimp (1984) has discussed the Miller algorithm with some
examples of Gauss hypergeometric functions.

For each of the five basic recursions the coefficients An, Bn and Cn of the
recurrence relation (4.50) are available now (Gil, Segura and Temme 2006,
2007a). A nice property of these recurrences is that the ratios of the coeffi-
cients An/Cn and Bn/Cn have finite limits as n → +∞ except, perhaps, at
some singular points in the z-plane. We use the following notation:

α = lim
n→∞

An

Cn
, β = lim

n→∞
Bn

Cn
. (4.55)

According to Perron’s theorem the existence of minimal solutions is guaran-
teed when the roots of the characteristic equation t2 + βt + α = 0 have dif-
ferent moduli. The equation |t1| = |t2| gives curves in the complex z-plane,
and these curves are the boundaries of domains where we can distinguish
minimal and dominant solutions of the recurrence relations.

To denote the cases we use the notation (sign(ε1) sign(ε2) sign(ε3)). For
example, the recursion related to

yn = 2F1

(
a + n, b

c + n
; z

)
. (4.56)
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will be denoted by (+ 0 +). By using (4.53) we can write this as

yn = (1 − z)−b
2F1

(
c − a, b

c + n
; ζ

)
, ζ =

z

z − 1
. (4.57)

If we have a pair {Fn, Gn} of minimal and dominant solutions of recursions
related to the basic form (0 0 +), we can use the relation (4.53) to obtain a
pair {fn, gn} for the recursion related to (+ 0 +).

We give the details of two basic recursions, namely the cases (+ 0 0) and
(+ + 0). For the other basic forms (+ + −), (+ 0−), and (0 0 +) we refer
to Gil, Segura and Temme (2006, 2007a).

We give six solutions of the recurrence relation for the two cases consid-
ered here. These solutions are related to the three pairs of Gauss functions
that are linearly independent solutions in the neighbourhood of the singular
points 0, 1,∞ of the Gauss hypergeometric differential equation (2.20).

The (+ 0 0) recursion

The recurrence relation reads

A(a + n)yn−1 + B(a + n)yn + C(a + n)yn+1 = 0, (4.58)

where

A(a) = c − a,

B(a) = 2a − c − (a − b)z, (4.59)

C(a) = a(z − 1).

The zeros of the characteristic polynomial of the recurrence relation (4.58)
are

t1 = 1, t2 =
1

1 − z
. (4.60)

The equation |t1| = |t2| holds when |1 − z| = 1, which defines a circle with
centre z = 1 and radius 1. Inside the circle we have |t2| > |t1|.

Solutions of the recurrence relation (4.58) are

y1,n = 2F1

(
a + n, b

c
; z

)
,

y2,n =
Γ(a + n + 1 − c)

Γ(a + n)
2F1

(
1 + a + n − c, 1 + b − c

2 − c
; z

)
,

y3,n =
Γ(a + n + 1 − c)

Γ(a + b + n + 1 − c)
2F1

(
a + n, b

a + b + n + 1 − c
; 1 − z

)
, (4.61)

y4,n = (1 − z)−n Γ(n + a + b − c)

Γ(n + a)
2F1

(
c − a − n, c − b

c + 1 − a − b − n
; 1 − z

)
,
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y5,n = (−z)−n Γ(n + 1 − c + a)

Γ(1 + a + n − b)
2F1

(
a + n, a + n + 1 − c

a + n + 1 − b
;

1

z

)
,

y6,n =
Γ(a + n − b)

Γ(a + n)
2F1

(
b, b + 1 − c

b + 1 − a − n
;

1

z

)
.

All these functions are solutions of the recurrence relation (4.58). Only
one of these is the minimal solution. Any solution different from the minimal
solution cannot be minimal, because the minimal solution is unique (up to
multiplicative factors not depending on n).

In the following scheme we give the properties of the six solutions:

|z − 1| < 1 |z − 1| > 1

y1 dominant dominant

y2 dominant dominant

y3 minimal/dominant dominant

y4 dominant/minimal dominant

y5 dominant minimal

y6 dominant dominant/minimal

(4.62)

where, when two possibilities appear, the first one corresponds to n → +∞
and the second one to n → −∞.

The (+ + 0) recursion

The recurrence relation reads

A(a + n, b + n)yn−1 + B(a + n, b + n)yn + C(a + n, b + n)yn+1 = 0, (4.63)

where

A(a, b) = (c − a)(c − b)(c − a − b − 1),

B(a, b) = (c − a − b){c(a + b − c) + c − 2ab

+ z[(a + b)(c − a − b) + 2ab + 1 − c]},

C(a, b) = ab(c − a − b + 1)(1 − z)2.

(4.64)

The coefficients of characteristic equation λ2 + βλ + α = 0 are

α = 1/(1 − z)2, β = −2(1 + z)/(1 − z)2, (4.65)

with roots

t1 =
1

(1 −√
z)2

, t2 =
1

(1 +
√

z)2
. (4.66)

The equation |t1| = |t2| holds when z ≤ 0, otherwise |t1| > |t2|. In this case,
the region |t1| �= |t2| is one connected region.
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We give six solutions of the recurrence relation (4.63):

y1,n = 2F1

(
a + n, b + n

c
; z

)
, (4.67)

y2,n =
Γ(1 + a − c + n)Γ(1 + b − c + n)

Γ(a + n)Γ(b + n)
2F1

(
1 + a − c + n, 1 + b − c + n

2 − c
; z

)
,

y3,n =
Γ(1 + a − c + n)Γ(1 + b − c + n)

Γ(1 + a + b − c + 2n)
2F1

(
a + n, b + n

1 + a + b − c + 2n
; 1 − z

)
,

y4,n = (1 − z)−2n Γ(a + b − c + 2n)

Γ(a + n)Γ(b + n)
2F1

(
−a + c − n,−b + c − n

1 − a − b + c − 2n
; 1 − z

)
,

y5,n = (−z)−n Γ(1 + a − c + n)

Γ(b + n)
2F1

(
a + n, 1 + a − c + n

1 + a − b
;

1

z

)
,

y6,n = (−z)−n Γ(1 + b − c + n)

Γ(a + n)
2F1

(
b + n, 1 + b − c + n

1 − a + b
;

1

z

)
.

In the following scheme we give the properties of the six solutions; the
properties hold in C \ {z ≤ 0}:

y1,n dominant

y2,n dominant

y3,n minimal/dominant

y4,n dominant/minimal

y5,n dominant

y6,n dominant

(4.68)

where, when two possibilities appear, the first one corresponds to n → +∞
and the second one to n → −∞.

This case has applications for Jacobi polynomials. We have

P (α,β)
n (x) =

(
n + α

n

)(
1 + x

2

)n

2F1

(−n, − β − n

α + 1
; z

)
, z =

x − 1

x + 1
.

(4.69)
A representation with +n at the a and b places follows from applying (4.54).
The interval of orthogonality is [−1, 1], and if x ∈ [−1, 1] we have z ≤ 0.
We see that in and outside the orthogonality interval the Jacobi polynomial

P
(α,β)
n (x) is a dominant solution of its recurrence relation and this relation

can be used for computing these polynomials in the forward direction. Only
the usual rounding errors should be taken into account.

Remark 4.5. Observe that y3,n and y4,n are related to recursion schemes
of the form (+ + 2+) and (− − 2−), which fall outside the set of 26 forms
considered here.
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4.4. Anomalous behaviour of some second-order homogeneous and

first-order inhomogeneous recurrences

It is usually assumed that asymptotic information is enough for predicting
stable directions for recursion, at least for second-order homogeneous equa-
tions. This, however, is not always true and there exist examples for which,
for finite orders n, a minimal solution interchanges its role with certain dom-
inant solutions. This, as a consequence, implies the anomalous convergence
of the associated continued fraction to a value different from the ratio of
consecutive minimal solutions, a phenomenon first observed (Gautschi 1977)
in connection with a recurrence relation for confluent hypergeometric func-
tions. See also Deaño and Segura (2007) and Gil et al. (2007b).

5. Uniform asymptotic expansions

Writing efficient algorithms for special functions may become problematic
when several large parameters are involved. In particular, problems arise
when functions suddenly change their behaviour, say from monotonic to
oscillatory behaviour. For example, the Bessel function Jν(x) has a turning
point at x = ν (see Remark 3.20), and for large ν the function is oscillatory
for x > ν and monotonic for x < ν. See Figure 5.1. To describe the
asymptotic behaviour of Jν(x) for large ν and x ∼ ν we need the Airy
function Ai(z), which is a solution of the simple turning point equation
w′′ − zw = 0.

For many other special functions of mathematical physics, powerful uni-
form asymptotic expansions are available, which describe precisely how

50

− 0.2

− 0.1

0.1

0.2

Figure 5.1. The Bessel function J50(x), 0 ≤ x ≤ 100.
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the functions behave, which are valid for large domains of the parame-
ters, and which provide tools for designing high-performance computational
algorithms.

In this section we discuss examples of uniform asymptotic expansions
and their numerical aspects. We explain why these expansions are use-
ful, and why they are usually difficult to handle in numerical algorithms.
First we consider uniform expansions of the incomplete gamma functions.
These functions are important in probability theory, but also in physical
problems. Another important class concerns the functions having a turning
point in their defining differential equation, in which case Airy-type expan-
sions arise, as mentioned earlier. We give details of Airy-type expansions
for Bessel functions.

5.1. Asymptotic expansions for the incomplete gamma functions

We recall the definitions of the incomplete gamma functions

γ(a, z) =

∫ z

0
ta−1e−t dt, Γ(a, z) =

∫ ∞

z
ta−1e−t dt, (5.1)

where for the first integral we need Re a > 0 and for both integrals we
assume that |ph z| < π.

Integrating by parts in the second integral gives

Γ(a, z) = −
∫ ∞

z
ta−1 d e−t = za−1e−z + (a − 1)

∫ ∞

z
ta−2e−t dt. (5.2)

Repeating this we find for n = 1, 2, 3, . . .

Γ(a, z) = za−1e−z

[
1 +

a − 1

z
+

(a − 1)(a − 2)

z2
+ · · · (5.3)

+
(a − 1)(a − 2) · · · (a − n + 1)

zn−1

]
+ Rn(a, z),

where

Rn(a, z) = (a − 1)(a − 2) · · · (a − n)

∫ ∞

z
ta−n−1e−t dt. (5.4)

For positive a and z we can easily find a bound for the remainder. If a > n+1
the integrand has a maximum at t0 = a− n− 1. If a ≤ n + 1 the integrand
is decreasing on t > 0. In any case, if z > a − n, we can integrate in the
integral in (5.4) with respect to the variable p = t+(n− a) ln t, which gives

Rn(a, z) = (a − 1)(a − 2) · · · (a − n)

∫ ∞

p0

e−p dp

t + n − a
, (5.5)

where p0 = z+(n−a) ln z. Because t ≥ z in (5.4) we have t+n−a ≥ z+n−a,
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and we obtain

Rn(a, z) ≤ (a − 1)(a − 2) · · · (a − n)

zn

z

(z + n − a)
za−1e−z, z > a − n.

(5.6)
This shows the asymptotic character of the expansion (5.3) when n > a,
as z → ∞. However, the condition z > a − n is not enough to make it
a useful expansion. When a is also large, say a ∼ z, then the ratios of
successive terms in the expansion (5.3) are of order O(1), and, hence, the
terms are not even becoming small. We say that the expansion in (5.3) does
not hold uniformly with respect to a > 0. However, it holds uniformly for
a in compact intervals.

For the function γ(a, z) we can also obtain an asymptotic representation.
Integration by parts now starts with

γ(a, z) =
1

a

∫ z

0
e−t dta =

1

a
zae−z +

1

a

∫ z

0
tae−t dt. (5.7)

This is the beginning of the convergent expansion

γ(a, z) =
1

a
zae−z

∞∑

n=0

zn

(a + 1)(a + 2) · · · (a + n)
. (5.8)

This expansion has an asymptotic character when a is large, and again
we see that the asymptotic property does not hold uniformly with respect
to z > 0 (although the expansion is convergent for all finite z). Both
expansions in (5.3) and (5.8) have their limitations with respect to in which
domains we can use them for numerical computations. But they share one
nice property: the coefficients can be computed very easily.

5.2. Uniform asymptotic expansions

The asymptotic expansions of the incomplete gamma functions Γ(a, z) and
γ(a, z) given in the previous section become useless when both parameters
a and z are of the same size. The representation for Γ(a, z) in (5.3) is valid
for any a and z (with the usual condition |ph z| < π), but we can use it
as an asymptotic representation only when |z| ≫ |a|. As mentioned after
(5.6), the ratio of successive terms in the representation (5.3) are of order
O(1) when z ∼ a.

We give details of the uniform asymptotic expansions for the incom-
plete gamma functions. One essential feature of such expansions is the
role of certain special functions in the expansions. In the standard, non-
uniform, expansions usually only elementary functions occur, such as expo-
nential and trigonometric functions. In uniform expansions we usually need
higher transcendental functions, such as Airy functions, error functions,
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Q(10,10λ) P(10,10λ)

Figure 5.2. The function P (a, λa) and Q(a, λa)
for λ ∈ [0, 2] and a = 10 and a = 100.

Fresnel integrals, and so on. The proper choice of these special functions is
not always clear without a further study of asymptotic analysis.

We consider a uniform expansion that can be used for both Γ(a, z) and
γ(a, z), and for all large values of a and z, as well as for complex values,
but we continue the discussion for positive real parameters.

The incomplete gamma functions are related to several cumulative dis-
tribution functions of probability theory, with the underlying distribution
being the gamma distribution. In particular, the incomplete gamma func-
tions appear in the form of the chi-square probability functions. For several
reasons it is convenient to work with the normalized functions

P (a, z) =
γ(a, z)

Γ(a)
, Q(a, z) =

Γ(a, z)

Γ(a)
, (5.9)

for example, because of their role in probability theory, and because no
overflow occurs for large values of a. We have

P (a, z) + Q(a, z) = 1. (5.10)

In Figure 5.2 we show the graphs of these functions, where we have used
a parameter λ to scale the z-variable. In fact we give the graphs of the
functions P (a, λa) and Q(a, λa) for λ ∈ [0, 2] and a = 10 and a = 100. As
a increases the graphs become steeper when λ passes the value λ = 1.

As is well known in the theory of cumulative distribution functions, many
of these functions approach the normal or Gaussian probability functions
when certain parameters become large. In probability theory the normal
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distribution functions are defined by

P (z) =
1√
2π

∫ z

−∞
e−

1

2
t2 dt, Q(z) =

1√
2π

∫ ∞

z
e−

1

2
t2 dt, (5.11)

with the property P (z) + Q(z) = 1.
In our analysis we prefer the notation in terms of the error function and

complementary error function, which are defined by

erf z =
2√
π

∫ z

0
e−t2 dt, erfc z =

2√
π

∫ ∞

z
e−t2 dt, (5.12)

with the symmetry relations erf z + erfc z = 1 and erfc z + erfc(−z) = 2.
These are related to the normal distribution by

P (z) = 1
2
erfc(−z/

√
2), Q(z) = 1

2
erfc(z/

√
2). (5.13)

The uniform expansion of the incomplete gamma functions

In Temme (1996, pp. 283–286) we derived the uniform expansion by using
saddle point methods for integrals. In that analysis the complementary error
function appeared because a singularity (a pole) of the integrand approaches
the saddle point, when a ∼ z. For details on the role of the complementary
error function in such situations, see Wong (2001, pp. 356–358).

We summarize the results by giving the following representations:

Q(a, z) = 1
2
erfc(η

√
a/2) + Ra(η),

P (a, z) = 1
2
erfc(−η

√
a/2) − Ra(η),

(5.14)

where
1
2
η2 = λ − 1 − ln λ, λ =

z

a
, (5.15)

and

Ra(η) =
e−

1

2
aη2

√
2πa

Sa(η), Sa(η) ∼
∞∑

n=0

Cn(η)

an
, (5.16)

as a → ∞.
The relation between η and λ in (5.15) becomes clear when we expand

λ − 1 − lnλ = 1
2
(λ − 1)2 − 1

3
(λ − 1)3 + 1

4
(λ − 1)4 + · · · , (5.17)

and in fact the relation in (5.15) can also be written as

η = (λ − 1)

√
2(λ − 1 − ln λ)

(λ − 1)2
, (5.18)

where the sign of the square root is positive for λ > 0. For complex values
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we use analytic continuation. An expansion for small values of |λ− 1| reads

η = (λ − 1) − 1
3
(λ − 1)2 + 7

36
(λ − 1)3 + · · · , (5.19)

and, upon inverting this expansion,

λ = 1 + η + 1
3
η2 + 1

36
η3 + · · · . (5.20)

Note that the symmetry relation P (a, z)+Q(a, z) = 1 is preserved in the
representations in (5.9) because erfc z + erfc(−z) = 2.

We give the steps on determining the coefficients Cn(η) in (5.16). Dif-
ferentiating the relation in (5.14) of Q(a, z) with respect to η gives, on the
one hand,

dQ(a, z)

dη
=

dQ(a, z)

dz

dz

dη
= − 1

Γ(a)
za−1e−z dz

dη
, (5.21)

and on the other hand, by using (5.14) and (5.16),

dQ(a, z)

dη
=

[
−
√

a

2π

λ − 1

λ
− η

√
a

2π
Sa(η) +

1√
2πa

dSa(η)

dη

]
e−

1

2
aη2

, (5.22)

where we have used
dz

dη
= a

dλ

dη
= a

λη

λ − 1
. (5.23)

After straightforward manipulations we obtain

dSa(η)

dη
− aηSa(η) = a

[
1 − η

(λ − 1)Γ∗(a)

]
, (5.24)

where Γ∗(a) is defined by

Γ∗(a) =

√
a

2π
eaa−aΓ(a), a > 0. (5.25)

We have the expansion

1

Γ∗(a)
∼

∞∑

n=0

γna−n, a → ∞, (5.26)

where the first few γn are

γ0 = 1, γ1 = − 1
12

, γ2 = 1
288

, γ3 = 139
51840

. (5.27)

The numbers γn also appear in the well-known asymptotic expansion of the
Euler gamma function. That is,

Γ∗(a) ∼
∞∑

n=0

(−1)nγna−n, a → ∞. (5.28)
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Figure 5.3. Graphs of the first five coefficients Cn(η).
Because of scaling we have drawn graphs of ρCn(η),
where ρ = 1, 50, 50, 100, 100 for n = 0, 1, 2, 3, 4,
respectively.

We substitute the expansion of Sa(η) given in (5.16) and the expansion
(5.26) into the differential equation (5.24). Comparing, after these substi-
tutions, equal powers of a in (5.24), we obtain

C0(η) =
1

λ − 1
− 1

η
, (5.29)

and the recurrence relation

ηCn(η) =
d

dη
Cn−1(η) +

η

λ − 1
γn, n ≥ 1. (5.30)

For C1(η) we have

C1(η) =
1

η3
− 1

(λ − 1)3
− 1

(λ − 1)2
− 1

12(λ − 1)
. (5.31)

The first two coefficients (and all higher coefficients) have a removable
singularity at η = 0, that is, at λ = 1 or z = a. All Cn(η) are analytic at
the origin η = 0.

The expansion in (5.16) has no restrictions on the parameter λ. It holds
uniformly with respect to λ ≥ 0 (and for complex values of a and λ). So it
is much more powerful than, for example, the asymptotic expansion (5.3).
However, the computation of the coefficients Cn(η) is not as easy as that
of the coefficients in (5.3). In particular, near the transition point, that
is, when z ∼ a, the removable singularities in the representations of C0

and C1 as shown in (5.29) and (5.31) are difficult to handle in numerical
computations. All higher coefficients show this type of cancellations, and
the removable singularities in Cn are poles of order 2n + 1.

In Figure 5.3 we show the graphs of Cn(η) for n = 0, 1, 2, 3, 4, properly
scaled in order to get them visible in one figure.
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Expansions for the coefficients

We concentrate on the numerical aspects of the expansion of Sa(η) in (5.16).
We have already observed that the coefficients Ck(η) in (5.16) are difficult
to evaluate near the transition point η = 0, which corresponds to λ = 1,
or z = a. We will give two methods for evaluating the coefficients and
the expansion.

The coefficients Ck(η) are analytic (Temme 1996, pp. 283–286) inside the
disk |η| < 2

√
π = 3.54 . . . . So we can expand all coefficients in power series

for |η| < 2
√

π. For numerical applications these expansions can be used for
complex η, say, for |η| ≤ 1. More efficiently, when the variables a and z
are real and positive, we can expand the coefficients in terms of Chebyshev
polynomials in intervals of the real η-axis.

We give the first terms in the Maclaurin expansions of the first coefficients:

C0(η) = −1
3

+ 1
12

η − 2
135

η2 + 1
864

η3 + 1
2835

η4 − 139
777600

η5 + · · · ,

C1(η) = − 1
540

− 1
288

η + 1
378

η2 − 77
77760

η3 + 1
4860

η4 − 1
2488320

η5 + · · · ,

C2(η) = 25
6048

− 139
51840

η + 1
1296

η2 + 1
497664

η3 − 6199
57736800

η4 + · · · , (5.32)

C3(η) = 101
155520

+ 571
2488320

η − 54179
115473600

η2 + 41969
156764160

η3 − 20639
272937600

η4 + · · · ,

C4(η) = − 3184811
3695155200

+ 163879
209018880

η − 8707
29113344

η2 − 47207
32248627200

η3 + · · · .

In Section 5.3 we discuss alternative uniform expansions in which no co-
efficients occur that are difficult to compute. But first we give another
numerical scheme for the expansion in (5.16).

Numerical algorithm for small values of η

Instead of expanding each coefficient Cn(η) in powers of η, which needs
the storage of many coefficients, we expand the function Sa(η) of (5.16) in
powers of η. The coefficients are functions of a, and we write

Sa(η) =
∞∑

n=0

αnηn, (5.33)

where the series again converges for |η| < 2
√

π.
To compute the coefficients αn, we use the differential equation for Sa(η)

given in (5.24). Substituting the expansion (5.33) into (5.24), using the
coefficients dn in the expansion

η

λ − 1
=

∞∑

n=0

dnηn, (5.34)
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we obtain for αn the recurrence relation

αn =
1

a
(n + 2)αn+2 +

dn+1

Γ∗(a)
, n = 0, 1, 2, . . . . (5.35)

The coefficients dn follow from the coefficients of C0(η), of which the first
few are given in (5.32), because η/(λ − 1) = 1 + ηC0(η). We have

d0 = 1, d1 = −1
3
, d2 = − 1

12
, d3 = − 2

135
, d4 = 1

864
, d5 = 1

2835
.

(5.36)
With these values we can compute the first terms with odd index:

α1 =
a

Γ∗(a)

[
Γ∗(a) − 1

]
,

α3 =
a2

1 · 3 Γ∗(a)

[
Γ∗(a) − 1 − 1

12a

]
, (5.37)

α5 =
a2

1 · 3 · 5 Γ∗(a)

[
Γ∗(a) − 1 − 1

12a
− 1

288a2

]
.

We observe, see (5.27) and (5.28), that the computation of these αn re-
quires not only the value of Γ∗(a), but also that of Γ∗(a) with the first terms
of the asymptotic expansion subtracted. The higher odd coefficients show
the same pattern; more and more terms of the asymptotic expansions have
to be subtracted. In fact we recur remainders of the asymptotic expansion
of the gamma function. In particular, when a is large, this is a very unsta-
ble process. The same problems arise with the even coefficients. Note that
α0 = Sa(0), a quantity that can be computed from an asymptotic expan-
sion, and the higher even terms follow from the recursion in (5.35), with
more and more terms subtracted in this expansion of Sa(0).

When we use (5.35) in the backward direction the recursion becomes
stable. In addition, we do not need the computation of Sa(0) and Γ∗(a),
because these values follow from the backward recursion process. We only
need enough coefficients dn of (5.34) for this recursion.

First we remove Γ∗(a) from the recursion in (5.35) by writing

αn =
βn

Γ∗(a)
, n = 0, 1, 2, . . . , (5.38)

which gives for βn the recursion

βn =
1

a
(n + 2)βn+2 + dn+1, n = 0, 1, 2, . . . . (5.39)

We choose a positive integer N , put βN+2 = βN+1 = 0 and compute the
sequence

βN , βN−1, . . . , β1, β0 (5.40)
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Table 5.1. Relative errors δ in the computation of Γ(a) by using
the backward recursion scheme (5.39) for several values of a and
N = 25 and N = 35.

N a δ a δ a δ

N = 25 2 0.3910(−06) 8 0.1110(−13) 14 0.7910(−17)
3 0.2710(−08) 9 0.2410(−14) 15 0.3210(−17)
4 0.7510(−10) 10 0.6110(−15) 16 0.1410(−17)
5 0.4510(−11) 11 0.1810(−15) 17 0.6410(−18)
6 0.4410(−12) 12 0.5810(−16) 18 0.3010(−18)
7 0.6110(−13) 13 0.2110(−16) 19 0.1510(−18)

N = 35 2 0.8010(−06) 8 0.7610(−17) 14 0.1910(−21)
3 0.5710(−09) 9 0.8210(−18) 15 0.5010(−22)
4 0.3010(−11) 10 0.1110(−18) 16 0.1510(−22)
5 0.5010(−13) 11 0.1810(−19) 17 0.4610(−23)
6 0.1710(−14) 12 0.3510(−20) 18 0.1510(−23)
7 0.9310(−16) 13 0.7710(−21) 19 0.5410(−24)

from the recurrence relation (5.39). Because

Γ∗(a) = 1 +
1

a
β1, (5.41)

we have

Sa(η) ∼ a

a + β1

N∑

n=0

βnηn (5.42)

as an approximation for Sa(η).
We verify this algorithm by taking several values of a and N = 25 and

N = 35. In Table 5.1 we give the relative errors of the approximations of
Γ(a), which are computed by using β1 in (5.41), and by computing Γ(a)
from the relation in (5.25). For example, with N = 25 and a = 5 we obtain

Γ(a) = 23.999999999892 · · · , with relative error 0.4510(−11). (5.43)

We observe that for the larger values of a the scheme gives better approxi-
mations, as is the case for the larger value of N .

We have used the approximation in (5.42) for computing the incomplete
gamma functions in IEEE double precision for a ≥ 12 and |η| ≤ 1. We need
the storage of 25 coefficients dn, and in the series in (5.42) we need 25 terms
or less.
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x

a

a = 12

x = 0.30a

x = 2.35a

Figure 5.4. The domain of application (grey) where we
can apply the backward recursion scheme (5.39) to obtain
IEEE double precision values of Sa(η). The grey domain
is bounded by the lines a = 12, x = 2.35a and x = 0.30a.

The value η = −1 corresponds to λ = 0.30 . . . , and the value η = 1 with
λ = 2.35 . . . . In Figure 5.4 we show the area in the (x, a) quarter plane
where we can apply the algorithm to obtain double precision. The domain
is bounded by the lines a = 12, x = 2.35a and x = 0.30a.

5.3. A simpler uniform expansion

The expansion considered in Section 5.2 can be modified to obtain an ex-
pansion with coefficients that can be evaluated much more easily than the
coefficients Cn(η). The modified expansion is again valid for large values of
a; it is again valid in the transition area a ∼ z. The restriction on λ = z/a,

however, is λ − 1 = o(a−
1

3 ) as a → ∞.
We start with the integral (see (5.1))

Γ(a + 1, z) =

∫ ∞

z
tae−t dt, (5.44)

and we consider positive parameters a and z. We substitute t = a(1 + s).
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This gives

Γ(a + 1, z) = aa+1e−a

∫ ∞

µ
e−a[s−ln(1+s)] ds, µ = λ − 1 =

z − a

a
. (5.45)

The exponential function has a maximum at the origin s = 0. We write

Γ(a + 1, z) = aa+1e−a

∫ ∞

µ
e−

1

2
as2−af(s) ds, (5.46)

where

f(s) = s − 1
2
s2 − ln(1 + s) = O(s3), s → 0. (5.47)

We expand

e−af(s) =
∞∑

n=0

Dn(a)sn, |s| < 1, (5.48)

and upon substituting this expansion in (5.46), we obtain the expansion

Γ(a + 1, z) ∼ aa+1e−a
∞∑

n=0

Dn(a)Φn(a, z), (5.49)

where

Φn(a, z) =

∫ ∞

µ
sne−

1

2
as2

ds, n = 0, 1, 2, . . . . (5.50)

The first two Φn are

Φ0(a, z) =

√
π

2a
erfc(µ

√
a/2), Φ1(a, z) =

1

a
e−

1

2
aµ2

. (5.51)

By integrating by parts in (5.50) it easily follows that

aΦn+1(a, z) = nΦn−1(a, z) + µne−
1

2
aµ2

, n = 1, 2, 3, . . . . (5.52)

We can also derive a recurrence relation for the coefficients. We have the
starting values D0(a) = 1, D1(a) = 0, and by differentiating (5.48), we
obtain

(n + 1)Dn+1(a) = aDn−2(a) − nDn(a), n = 1, 2, 3, . . . . (5.53)

The expansion in (5.50) is of interest because the coefficients Dn(a) can be
computed very easily by using the recursion in (5.53). Further, the recursion
for the Φn is quite simple.

The expansion, with proofs for complex values of a and z, is derived
in Ferreira, López and Pérez Sinuśıa (2005). In this reference several other
expansions of the incomplete gamma function are considered. See also Paris
(2002).
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We observe that a similar expansion can be derived for the other incom-
plete gamma function γ(a + 1, z). In that case the functions Φn should be
replaced by functions Ψn defined by

Ψn(a, z) =

∫ µ

−1
sne−

1

2
as2

ds, n = 0, 1, 2, . . . . (5.54)

The function Ψ0 can be expressed in terms of two error functions, and the
other ones follow from integrating by parts.

From a numerical example we conclude that the asymptotic convergence
of the expansion (5.49) is quite slow. When we take z = 100 and a = 101,
and we sum the series with 12 terms, we obtain 4 significant digits. This
result does not improve when we take more terms.

5.4. Airy-type expansions for Bessel functions

Airy functions are solutions of the differential equation

w′′ − z w = 0. (5.55)

Two linearly independent solutions that are real for real values of z are
denoted by Ai(z) and Bi(z). Equation (5.55) is the simplest second-order
linear differential equation that has a simple turning point (at z = 0). More
general turning point equations have the standard form

d2 W

d ζ2
=

[
u2 ζ + ψ(ζ)

]
W, (5.56)

and the problem is to find an asymptotic approximation of W (ζ) for large
values of u, that holds uniformly in a neighbourhood of ζ = 0. A first
approximation is obtained by neglecting ψ(ζ), which gives the solutions

Ai
(
u

2

3 ζ
)
, Bi

(
u

2

3 ζ
)
. (5.57)

For a detailed discussion of this kind of problem we refer to Olver (1997,
Chapter 11). Many solutions of physical problems and many special func-
tions can be transformed into the standard form (5.56). Examples are
Bessel functions, Whittaker functions, the classical orthogonal polynomials
(in particular Hermite and Laguerre polynomials), and parabolic cylinder
functions.

In all known cases the coefficients are difficult to compute in the neigh-
bourhood of the turning point, and we saw a similar difficulty in the uniform
expansion of the incomplete gamma functions in Section 5.2.

In this section we discuss two methods for computing the asymptotic se-
ries. One method is based on expanding the coefficients in the series into
Maclaurin series. In the second method we consider the computation of aux-
iliary functions that can be computed more efficiently than the coefficients
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in the first method, and we do not need the tabulation of many coefficients.
This method is similar to that described for the computation of incomplete
gamma functions in Section 5.2.

The methods described in this section are quite general, but we only treat
the case of Bessel functions, by using the differential equation of the Bessel
functions, which has a turning point character when the order and argument
of the Bessel functions are equal.

The Airy-type asymptotic expansions

The ordinary Bessel functions Jν(z) and Yν(z), and all other Bessel func-
tions, can be expanded in terms of Airy functions. We give the transforma-
tions of the Bessel differential equation

z2f ′′ + zf ′ +
(
z2 − ν2

)
f = 0 (5.58)

into the form (5.56). First we change the variable z into νz and apply a
transformation to remove the first derivative term. We obtain the equation

F ′′ +

(
ν2 z2 − 1

z2
+

1

4z2

)
F = 0, (5.59)

with solutions
√

zJν(νz) and
√

zYν(νz). The turning point character at
z = 1 of this equation is visible now, and we transform this point to the
origin by using the transformation

ζ

(
dζ

dz

)2

=
1 − z2

z2
, W =

√
ζ ′w, (5.60)

This transformation gives the equation (5.56) with ψ(ζ) given by

ψ(ζ) =
5

16ζ2
+

ζz2(z2 + 4)

4(z2 − 1)3
(5.61)

and solutions
√

z
√

ζ ′Jν(νz),
√

z
√

ζ ′Yν(νz). (5.62)

The transformations used here are Liouville transformations; see also Olver
(1997, p. 398).

Because the Airy functions given in (5.57) are solutions of (5.56) when
ψ(ζ) is neglected, and because of asymptotic properties of the Bessel func-
tions, the following representations are chosen:

Jν(νz) =
φ(ζ)

ν
1

3

[
Ai(ν

2

3 ζ)Aν(ζ) + ν− 4

3 Ai′(ν
2

3 ζ)Bν(ζ)
]
,

Yν(νz) = −φ(ζ)

ν
1

3

[
Bi(ν

2

3 ζ)Aν(ζ) + ν− 4

3 Bi′(ν
2

3 ζ)Bν(ζ)
]
,

(5.63)
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where

φ(ζ) =

(
4ζ

1 − z2

) 1

4

, φ(0) = 2
1

3 . (5.64)

The new variable ζ introduced in (5.60) can be written as

2
3
ζ3/2 = ln

1 +
√

1 − z2

z
−

√
1 − z2, 0 ≤ z ≤ 1,

2
3
(−ζ)3/2 =

√
z2 − 1 − arccos

1

z
, z ≥ 1.

(5.65)

Next we introduce asymptotic expansions for the functions Aν(ζ) and
Bν(ζ) of (5.63). It appears, after substituting the Bessel functions in (5.63)
into (5.56) that we have the formal expansions

Aν(ζ) ∼
∞∑

s=0

as(ζ)

ν2s
, Bν(ζ) ∼

∞∑

s=0

bs(ζ)

ν2s
. (5.66)

The first coefficients

a0(ζ) = 1, b0(ζ) = − 5

48ζ2
+

φ2(ζ)

48ζ

[
5

1 − z2
− 3

]
, (5.67)

where φ(ζ) is given by (5.64). Higher coefficients follow certain recurrence
relations. Further details on the coefficients are given later.

For the derivatives we have

J ′
ν(νz) = −φ̂(ζ)

[
ν− 4

3 Ai(ν
2

3 ζ)Cν(ζ) + ν− 2

3 Ai′(ν
2

3 ζ)Dν(ζ)
]
,

Y ′
ν(νz) = φ̂(ζ)

[
ν− 4

3 Bi(ν
2

3 ζ)Cν(ζ) + ν− 2

3 Bi′(ν
2

3 ζ)Dν(ζ)
]
,

(5.68)

where

φ̂(ζ) = −dζ

dz
φ(ζ) =

2

zφ(ζ)
, χ(ζ) =

φ′(ζ)

φ(ζ)
=

4 − z2[φ(ζ)]6

16ζ
, (5.69)

and
Cν(ζ) = χ(ζ)Aν(ζ) + A′

ν(ζ) + ζ Bν(ζ),

Dν(ζ) = Aν(ζ) + ν−2χ(ζ)Bν(ζ) + ν−2 B′
ν(ζ).

(5.70)

Primes denote differentiation with respect to ζ.
The functions Cν(ζ), Dν(z) have the expansions

Cν(ζ) ∼
∞∑

s=0

cs(ζ)

ν2s
, Dν(ζ) ∼

∞∑

s=0

ds(ζ)

ν2s
, (5.71)

where
cs(ζ) = χ(ζ) as(ζ) + a′s(ζ) + ζ bs(ζ),

ds(ζ) = as(ζ) + χ(ζ) bs−1(ζ) + b′s−1(ζ).
(5.72)
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The Airy-type asymptotic expansions of this section hold as ν → ∞,
uniformly with respect to z ∈ [0,∞) and for complex values of ν and z
(Olver 1997, Chapter 11).

The first coefficients cs, ds of (5.71) are

c0(ζ) =
7

48ζ
+

φ2(ζ)

48

[
9 − 7

1 − z2

]
, d0(ζ) = 1. (5.73)

A recursive scheme for evaluating as, bs is given by

a′′s(ζ) + 2ζb′s(ζ) + bs(ζ) − ψ(ζ) as(ζ) = 0,

2a′s+1(ζ) + b′′s(ζ) − ψ(ζ) bs(ζ) = 0,
(5.74)

where a0(ζ) = 1 and ψ(ζ) is given by (5.61).

Properties of the functions Aν , Bν , Cν , Dν

By using equation (5.56), with ψ(ζ) as given in (5.61), it is straightforward
to derive the following system of differential equations for the functions
Aν(ζ), Bν(ζ):

A′′ + 2ζB′ + B − ψ(ζ)A = 0,

B′′ + 2ν2A′ − ψ(ζ)B = 0,
(5.75)

where primes denote differentiation with respect to ζ.
A Wronskian for the system (5.75) follows by eliminating the terms with

ψ(ζ). This gives

A′′B − B′′A + B2 + 2ζB′B − 2ν2A′A = 0, (5.76)

which can be integrated as follows:

ν2 A2
ν(ζ) + Aν(ζ)B′

ν(ζ) − A′
ν(ζ)Bν(ζ) − ζB2

ν(ζ) = ν2. (5.77)

The constant on the right-hand side follows by taking ζ = 0 and from
information given later in this section.

Expansions for as(ζ), bs(ζ), cs(ζ), ds(ζ)

The singular points of the functions z(ζ), ψ(ζ), φ(ζ), φ̂(ζ), χ(ζ) and those of
the coefficients of the asymptotic expansions occur at

ζ± =
(

3
2
π
) 2

3 e±iπ/3. (5.78)

These points correspond to z = e∓πi. It follows that the radius of con-
vergence of the Maclaurin series of these quantities equals 2.81 · · · . In this
section we give the expansions and mention the values of the early coeffi-
cients.

It is convenient to start with an expansion of z in powers of ζ. We
substitute z = 1+z1ζ+· · · into the first part of (5.60). This gives z3

1 = −1/2.
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Using the relations in (5.65) we obtain the correct branch: z1 = −2−
1

3 . We
write

ζ = 2
1

3 η, (5.79)

and we obtain in a straightforward way the following expansions:

z(ζ) =
∞∑

n=0

znηn =
[
1 − η + 3

10
η2 + 1

350
η3 − 479

63000
η4 + · · ·

]
, (5.80)

ψ(ζ) = 2
1

3

∞∑

n=0

ψnηn = 2
1

3

[
1
70

+ 2
75

η + 138
13475

η2 − 296
73125

η3 − 38464
7074375

η4 + · · ·
]
,

φ(ζ) = 2
1

3

∞∑

n=0

φnηn = 2
1

3

[
1 + 1

5
η + 9

350
η2 − 89

15750
η3 − 4547

1155000
η4 + · · ·

]
,

φ̂(ζ) = 2
2

3

∞∑

n=0

φ̂nηn = 2
2

3

[
1 + 4

5
η + 18

35
η2 + 88

315
η3 + 79586

606375
η4 + · · ·

]
,

χ(ζ) = 2−
1

3

∞∑

n=0

χnηn = 2−
1

3

[
1
5

+ 2
175

η − 64
2625

η2 − 30424
3031875

η3 + · · ·
]
.

Next we consider the coefficients as, bs that are used in (5.66). We expand

as(ζ) =
∞∑

t=0

at
sη

t, bs(ζ) = 2
1

3

∞∑

t=0

bt
sη

t, (5.81)

where η is given in (5.79). The coefficients at
s, b

t
s are rational numbers.

We know that a0(ζ) = 1. Substituting the expansions in (5.74) we obtain
recurrence relations for the coefficients at

s, b
t
s. We give the expansions of the

first few terms:

a0(ζ) = 1, (5.82)

a1(ζ) = − 1
225

− 71
38500

η + 82
73125

η2 + 5246
3898125

η3 + 185728
478603125

η4 + · · · ,

a2(ζ) = 151439
218295000

+ 68401
147262500

η − 1796498167
4193689500000

η2 − 583721053
830718281250

η3 + · · · ,

a3(ζ) = − 887278009
2504935125000

− 3032321618951
9708942993750000

η + · · · ,

b0(ζ) = 2
1

3

[
1
70

+ 2
225

η + 138
67375

η2 − 296
511875

η3 − 38464
63669375

η4 + · · ·
]
, (5.83)

b1(ζ) = 2
1

3

[
− 1213

1023750
− 3757

2695000
η − 3225661

6700443750
η2 + 90454643

336992906250
η3 + · · ·

]
,

b2(ζ) = 2
1

3

[
16542537833

37743205500000
+ 115773498223

162820783125000
η + 548511920915149

1721719224225000000
η2 + · · ·

]
,

b3(ζ) = 2
1

3

[
− 9597171184603

25476663712500000
− 430990563936859253

568167343994250000000
η + · · ·

]
.
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Expansions for the coefficients cs, ds are not really needed, because these
quantities follow from the relations in (5.72), if expansions for the functions
in the right-hand sides of (5.72) are available.

Evaluation of the functions Aν(ζ), Bν(ζ) by iteration

We now concentrate on solving the system of differential equations in (5.75)
by using analytical techniques. Instead of expanding the coefficients as, bs

of the asymptotic series we expand the functions Aν(ζ), Bν(ζ) in Maclaurin
series. As remarked earlier, the singular points of these functions occur at

ζ± = (3π/2)
2

3 e±iπ/3, and the radius of convergence of the series of Aν(ζ)
and Bν(ζ) in powers of ζ equals 2.81 · · · .

We expand

Aν(ζ) =
∞∑

n=0

fn(ν)ζn, Bν(ζ) =
∞∑

n=0

gn(ν)ζn, ψ(ζ) =
∞∑

n=0

hnζn.

(5.84)
The coefficients f0, f1, . . . , g0, g1, . . . are to be determined, while the coef-
ficients hn are known. The first few hn follow from (5.79) and the second
line in (5.80):

h0 = 1
70

2
1

3 , h1 = 2
75

, h2 = 69
13475

2
2

3 , h3 = 148
73125

2
1

3 . (5.85)

Upon substituting the expansions into (5.75), we obtain for n = 0, 1, 2, . . .
the recurrence relations

(n + 2) (n + 1) fn+2 + (2n + 1) gn = ρn, ρn =
n∑

k=0

hkfn−k,

(n + 2) (n + 1) gn+2 + 2ν2(n + 1) fn+1 = σn, σn =
n∑

k=0

hkgn−k.

(5.86)

The solution {fn, gn} of the set of recursions (5.86) cannot be obtained
by forward recursion, because of instabilities. The same problems arise as
in the case of the incomplete gamma functions described in Section 5.2. We
give an iteration scheme to solve the recursions in the backward direction.
The scheme runs as follows; for details we refer to Temme (1997).

We choose an appropriate pair of functions F0, G0, and define two se-
quences of functions {Fm}, {Gm} by writing for m = 1, 2, 3, . . . :

F ′′
m + 2ζG′

m + Gm = ψ(ζ)Fm−1, G′′
m + 2ν2F ′

m = ψ(ζ)Gm−1. (5.87)

We rewrite (5.86) in backward form:

fn =
1

2ν2

[
1

n
σn−1 − (n + 1)gn+1

]
, (5.88)

gn−1 =
1

2n − 1

[
ρn−1 − n(n + 1)fn+1

]
, (5.89)
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Table 5.2. Relative errors during five iterations (i) of f0, g0, f5, g5 compared
with more accurate values fa

0
, etc. The final column shows the relative error

in the Wronskian (5.77) at ζ = 1.

i |f0 − fa
0
| |g0 − ga

0
| |f5 − fa

5
| |g5 − ga

5
| Wronskian

ν = 5

1 6.1110(−09) 1.7610(−06) 1.1210(−03) 6.1410(−04) 4.3610(−08)
2 4.5410(−12) 1.0310(−08) 6.1410(−06) 8.3310(−07) 2.0510(−10)
3 2.5610(−15) 1.6010(−11) 1.5210(−08) 8.4810(−10) 3.2910(−13)
4 1.2110(−17) 1.8310(−14) 6.4010(−12) 5.2510(−13) 6.7210(−16)
5 0.0010(−00) 4.1910(−17) 4.6410(−14) 4.0410(−16) 2.2310(−18)

ν = 10

1 4.2410(−10) 1.1410(−07) 2.9010(−04) 1.6310(−04) 2.7610(−09)
2 8.5010(−14) 8.1710(−10) 1.8410(−06) 5.7610(−08) 1.6410(−11)
3 1.4510(−17) 3.2010(−13) 1.1010(−09) 9.0610(−11) 6.6410(−15)
4 1.0810(−19) 9.8910(−17) 1.7410(−12) 1.2510(−15) 8.0710(−18)
5 0.0010(−00) 1.8810(−19) 1.3510(−15) 6.7410(−17) 3.4410(−19)

ν = 25

1 1.1210(−11) 2.9410(−09) 4.7010(−05) 2.6610(−05) 7.1010(−11)
2 3.6610(−16) 2.2210(−11) 3.0910(−07) 1.5210(−09) 4.4710(−13)
3 0.0010(−00) 1.4010(−15) 2.9510(−11) 2.6610(−12) 2.9110(−17)
4 0.0010(−00) 0.0010(−00) 5.6310(−14) 7.2510(−18) 1.7510(−19)
5 0.0010(−00) 0.0010(−00) 6.4510(−18) 3.4010(−19) 1.7610(−19)

where n ≥ 1. The coefficients are assumed to belong to the functions
Fm(ζ), Gm(ζ) of the iteration process described by (5.87), while the co-
efficients ρn−1 and σn−1 are assumed to be known, and contain Maclaurin
coefficients of Fm−1(ζ), Gm−1(ζ) and ψ(ζ). Observe that (5.88) does not
define f0. After having computed f1, f2, . . . , and g0, g1, g2, . . . by the back-
ward recursion process, we compute f0 from the Wronskian (5.77):

f0 =
−g1 +

√
g2
1 + 4ν2(ν2 + f1g0)

2ν2
, (5.90)

where the +sign of the square root is taken because of the known behaviour
of Fν(0) when ν is large.
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Verifying the iterative scheme by numerical experiments

For numerical applications information is needed about the growth of the
coefficients fn, gn. Since the Maclaurin series in (5.84) have a radius of
convergence equal to 2.81 · · · , for all values of ν, the size of the coefficients
fn, gn is comparable with that of hn. The number of coefficients fn, gn

needed in (5.84) also depends on the size of ζ. When |ζ| = 1 we need about
45 terms in the Maclaurin series in (5.84) in order to obtain an accuracy of
about 20 decimal digits. The ζ-interval [−1, 1] corresponds to the z-interval
[0.39, 1.98]. When z is outside this interval many other efficient algorithms
are available for the computation of Jν(νz), Yν(νz).

We have computed successive iterates of Maclaurin coefficients fn, gn de-
fined in (5.84) for different values of ν.

During each iteration we start the backward recursions with fn = gn−1 =
0, n ≥ 46, and we compute f45, g44, f44, g43, . . . by using (5.88) and (5.89).
We use hk, k = 0, 1, . . . , 45 and we recompute the coefficients ρk, σk, k =
0, 1, 2, . . . , 45, using (5.86) with values fk, gk obtained in the previous iter-
ation. In Table 5.2 we show the relative errors in the values f0, g0, f5, g5,
when compared with more accurate values fa

0 , etc. Computations are done
with Digits = 20. The accurate values are obtained by applying the back-
ward recursion by using 10 iterations. We also give the relative error in the
Wronskian relation (5.77) at ζ = 1 during each iteration.

From Table 5.2 we conclude that for ν = 5 we can already obtain an
accuracy of 10−10 in the Wronskian after two iterations; further iterations
improve the results. For larger values of ν the algorithm is very efficient.

5.5. Asymptotic expansions: Concluding remarks

The methods of this section can be used for Airy-type asymptotic expan-
sions for other special functions. We mention as interesting cases parabolic
cylinder functions, Coulomb wave functions, and other members of the class
of Whittaker functions. To stay in the class of Bessel functions, we mention
the modified Bessel function of the third kind Kiν(z) of imaginary order,
which plays an important role in the diffraction theory of pulses and in
the study of certain hydrodynamical studies. Moreover, this function is the
kernel of the Lebedev transform. The same functions Aν , Bν , Cν , Dν can be
used for this case.

We have described a method for handling the coefficients and auxiliary
functions when the properties of these quantities can be derived from the
differential equation of the functions to be approximated. The same or
similar Airy-type expansions can be obtained when starting from integral
representations in which two saddle points are close together (Wong 2001,
Chapter 7). For the coefficients in the expansions the same difficulties
may arise in numerical algorithms and the method for deriving Maclaurin
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expansions of the coefficients is quite different compared with the methods
described earlier in this section. For details on the case of integrals we refer
to Vidunas and Temme (2002).

6. The inversion of cumulative distribution functions

The inversion of cumulative distribution functions is an important topic in
statistics, probability theory and econometrics, in particular for computing
percentage points of chi-square, F , and Student’s t-distributions. In the
tails of these distributions the numerical inversion is not very easy, and for
the standard distributions asymptotic formulas are available.

Here we use the uniform asymptotic expansions of the incomplete gamma
functions (see Section 5.2) for inverting these functions for large values of a.
We start with the relatively simple problem of inverting the complementary
error function, again by using asymptotic methods. Finally we describe a
different method, giving a high-order Newton-like iteration method.

6.1. Asymptotic inversion of the complementary error function

We recall the definition of the complementary error function (here we use
real arguments)

erfc x =
2√
π

∫ ∞

x
e−t2 dt, (6.1)

and the asymptotic expansion

erfc x ∼ e−x2

x
√

π

∞∑

k=0

(−1)k(2k)!

k! (2x)2k
=

e−x2

x
√

π

(
1− 1

2
x−2+ 3

4
x−4− 15

8
x−6+· · ·

)
, (6.2)

as x → ∞.
We derive an asymptotic expansion for the inverse x(y) of the function

y(x) = erfcx for small positive values of y.
Let t, α and β be defined by

t =
2

πy2
, α =

1

ln t
, β = ln(ln t). (6.3)

Then we have the expansion

x(y) ∼ 1√
2α

(
1 + x1α + x2α

2 + x3α
3 + x4α

4 + · · ·
)
. (6.4)

The first coefficients xk are given by

x1 = −1
2
β,

x2 = −1
8

(
β2 − 4β + 8

)
, (6.5)
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x3 = − 1
16

(
β3 − 8β2 + 32β − 56

)
,

x4 = − 1
384

(
15β4 − 184β3 + 1152β2 − 4128β + 7040

)
,

x5 = − 1
768

(
21β5 − 352β4 + 3056β3 − 16752β2 + 57536β − 97984

)
.

We explain how these coefficients can be obtained. The equation y =
erfcx , with y small, will be solved for x by using the asymptotic expansion
in (6.2). We square the equation, and write

1

2
πy2 =

e−ξ

ξ
S2(ξ), (6.6)

where ξ = 2x2 and S(ξ) denotes the function that has the power series in
(6.2) as its asymptotic expansion with 2x2 replaced by ξ.

We can rewrite (6.6) in the form

ξ eξ = t S2(ξ), (6.7)

where t is defined in (6.3). We solve this equation for ξ, with t large.
We observe that this equation has been discussed in detail in de Bruijn

(1981, Section 2.4) for the case that S(ξ) = 1. We can apply the same
method for constructing an asymptotic expansion of the equation in (6.7).
We write

ξ = ln t − ln(ln t) + η, (6.8)

and find that η satisfies the relation

(ln t − ln(ln t) + η) eη = ln t S2(ln t − ln(ln t) + η). (6.9)

The quantity η can be expanded in the form

η = η1 α + η2 α2 + η3 α3 + · · · , (6.10)

where α is defined in (6.3). By using a few terms in the expansion of S(ξ)
we find

η1 = β − 2, η2 =
1

2
β2 − 3β + 7, (6.11)

where β is defined in (6.3).
The expansion for η gives an expansion for ξ (see (6.8)), and by using

x =
√

ξ/2 we obtain the expansion given in (6.4).
In Table 6.1 we give values of the approximation x0 of the solution of the

equation y = erfc x for several values of y. We have used the asymptotic
expansion (6.4) with the terms up to and including x4. The values x1 are
obtained by using one Newton step. We also give relative errors. The
computations are done in Maple with Digits = 10.
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Table 6.1. Solutions x(y) of the equation y = erfcx by using (6.4).

y x0 |erfc(x0)/y − 1| x1 |x0/x1 − 1|

10−02 1.820630554 0.3110(−02) 1.821591563 0.5310(−03)
10−03 2.326648925 0.5110(−03) 2.326782380 0.5710(−04)
10−04 2.751038248 0.1510(−03) 2.751070914 0.1210(−04)
10−05 3.123404718 0.5610(−04) 3.123415612 0.3510(−05)
10−06 3.458907270 0.2510(−04) 3.458911685 0.1310(−05)
10−07 3.766560973 0.1310(−04) 3.766563021 0.5410(−06)
10−08 4.052236421 0.6910(−05) 4.052237469 0.2610(−06)
10−09 4.320004932 0.4110(−05) 4.320005509 0.1410(−06)
10−10 4.572824704 0.2510(−05) 4.572825039 0.7410(−07)

For other methods of the inversion of the error functions we refer to
Strecok (1968), where coefficients of the Maclaurin expansion of x(y), the
inverse of y = erf x, are given, with Chebyshev coefficients for an expan-
sion on the y-interval [−0.8, 0.8]. For small values of y (not smaller than
10−300) high-precision coefficients of Chebyshev expansions are given for the
numerical evaluation of the inverse of y = erfc x. For rational Chebyshev
(near-minimax) approximations for the inverse of the complementary error
function y = erfc x we refer to Blair, Edwards and Johnson (1976), where
y-values are considered in the y-interval [10−10000, 1], with relative errors
ranging down to 10−23. An asymptotic formula for the region y → 0 is
also given.

Remark 6.1. We can use similar asymptotic inversion methods for find-
ing complex zeros of the complementary error function; see Gil et al. (2007b).
The present case is simpler because we only want to find one real solution
with the inversion method.

Remark 6.2. The solution of the equation ξ eξ = t (see (6.7)) can be
expressed in terms of Lambert’s W -function: ξ = W (t).

6.2. Asymptotic inversion of incomplete gamma functions

We solve the equations

P (a, x) = p, Q(a, x) = q, 0 ≤ p ≤ 1, 0 ≤ q ≤ 1, (6.12)

where P (a, x) and Q(a, x) are the incomplete gamma functions introduced
in Section 5.1. We invert the equations for x, with a as a large positive
parameter. This problem is of importance in probability theory and math-
ematical statistics. Several approaches are available in the (statistical) lit-
erature, where often a first approximation of x is constructed, based on
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asymptotic expansions, but this first approximation is not always reliable.
Higher approximations may be obtained by numerical inversion techniques,
which require evaluation of the incomplete gamma functions. This may be
rather time-consuming, especially when a is large.

In the present method we also use an asymptotic result. The approx-
imation is quite accurate, especially when a is large. It follows from nu-
merical results, however, that a three-term asymptotic expansion already
gives an accuracy of 4 significant digits for a = 2, uniformly with respect to
p, q ∈ [0, 1].

The method is rather general. In a later section we mention application
of the same method on a wider class of cumulative distribution functions.

The approximations are obtained by using the uniform asymptotic expan-
sions of the incomplete gamma functions given in Section 5.1, in which the
complementary error function is the dominant term. The inversion prob-
lem is started by inverting this error function term. For more details we
refer to Temme (1992a); for the asymptotic inversion of the incomplete beta
function, see Temme (1992b).

6.3. The asymptotic inversion method

We perform the inversion of the equations (6.12) with respect to the param-
eter η, by using the representations (5.14), with z replaced by x throughout,
and large positive values of a. Afterwards we have to compute λ and x from
the relation for η in (5.15) and λ = x/a. We concentrate on the second
equation in (6.12). Let us rewrite the inversion problem in the form

1
2
erfc

(
η
√

a/2
)

+ Ra(η) = q, q ∈ [0, 1], (6.13)

which is equivalent to the second equation in (6.12), and we denote the
solution of the above equation by η(q, a).

To start the procedure we consider Ra(η) in (6.13) as a perturbation, and
we define the number η0 = η0(q, a) as the real number that satisfies the
equation

1
2
erfc

(
η0

√
a/2

)
= q. (6.14)

Known values are

η0(0, a) = +∞, η0(
1
2
, a) = 0, η0(1, a) = −∞. (6.15)

We note the symmetry η0(q, a) = −η0(p, a). Computation of η0 requires
an inversion of the error function, but this problem has been satisfactorily
solved in the literature; see Blair et al. (1976) and Strecok (1968). The value
η defined by (6.13) is, for large values of a, approximated by the value η0.
We write

η(q, a) = η0(q, a) + ε(η0, a), (6.16)
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and we try to determine the function ε. It appears that we can expand this
quantity in the form

ε(η0, a) ∼ ε1

a
+

ε2

a2
+

ε3

a3
+ · · · , (6.17)

as a → ∞. The coefficients εi will be written explicitly as functions of η0.
We first remark that (6.13) yields the relation

dq

dη
=

d

dη
Q(a, x) =

d

dx
Q(a, x)

dx

dη
. (6.18)

Using the definition of Q(a, x) and the relation for η in (5.15), we obtain,
after straightforward calculations,

dq

dη
= − 1

Γ∗(a)

√
a

2π
f(η)e−

1

2
aη2

, (6.19)

where Γ∗(a) is defined in (5.25), and

f(η) =
η

λ − 1
, (6.20)

the relation between η and λ being given in (5.15). For small values of η we
can expand

f(η) = 1 − 1
3
η + 1

12
η2 + · · · . (6.21)

From (6.14) we obtain

dq

dη0
= −

√
a

2π
e−

1

2
aη2

0 . (6.22)

Upon dividing (6.19) and (6.22) we eliminate q, although it is still present
in η0. So we obtain

dη

dη0
=

Γ∗(a)

f(η)
e

1

2
a(η2−η2

0
), −∞ < η0 < ∞. (6.23)

Substitution of (6.16) gives the differential equation

f(η0 + ε)

[
1 +

dε

dη0

]
= Γ∗(a)eaε(η0+ 1

2
ε), (6.24)

a relation between ε and η0, with a as (large) parameter.
It is convenient to write η in place of η0. That is, we try to find the

function ε = ε(η, a) that satisfies the equation

f(η + ε)

[
1 +

dε

dη

]
= Γ∗(a)eaε(η+ 1

2
ε). (6.25)

When we have obtained the solution ε(η, a) (in fact we find an approxi-
mation of the form (6.17)), we write it as ε(η0, a) and the final value of η
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follows from (6.16). The parameters λ and x of the incomplete gamma
function then follow from inversion of the relation for η in the first relation
of (5.15).

6.4. Determination of the coefficients εi

For large values of a we have Γ∗(a) = 1 + O(a−1); see (5.26). Comparing
dominant terms in (6.25), we infer that the first coefficient ε1 in (6.17) is
defined by

f(η) = eηε1 , (6.26)

giving

ε1 =
1

η
ln f(η). (6.27)

It is not difficult to verify that f is positive on R, f(0) = 1, and that f
is analytic in a neighbourhood of η = 0. It follows that ε1 = ε1(η) is an
analytic function on R. For small values of η we have, using (6.21),

ε1 = −1
3

+ 1
36

η + 1
1620

η2 + · · · . (6.28)

The function ε1(η) is non-vanishing on R (and hence negative). To show
this, consider the equation f2(η) = 1. From (6.20) and the relation for η in
(5.15), it follows that the corresponding λ-value should satisfy

− lnλ = (λ − 1)(2λ − 3). (6.29)

This equation has only one real solution λ = 1, which gives η = 0. However,
for this value ε1 equals −1

3 .
Further coefficients in (6.17) are obtained by using standard perturbation

methods. We need the expansion of Γ∗(a) given in (5.26), and

f(η + ε) = f(η) + εf ′(η) + 1
2
ε2f ′′(η) + · · · , (6.30)

in which (6.17) is substituted to obtain an expansion in powers of a−1.
Putting all this into (6.25), we find by comparing terms with equal powers
of a−1

ε2 =
1

12ηf
(12fε′1 + 12f ′ε1 − f − 6fε2

1), (6.31)

ε3 =
1

288ηf

(
288fε′2 + 288f ′ε1ε

′
1 − 24fε′1 + 288f ′ε2 + 144f ′′ε2

1 (6.32)

+ f − 288fε1ε2 − 144fε2
2η

2 − 144fε2ηε2
1 − 36fε4

1 − 24f ′ε1

)
.

The derivatives f ′ and ε′j are with respect to η, and evaluated at η. It will
be obvious that the complexity for obtaining higher-order terms is consider-
able. The terms shown so far have been obtained by symbolic manipulation.
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For numerical evaluations it is very convenient to have representations free
of derivatives.

The derivatives of f can be eliminated by using

f ′ = f(1 − f2 − fη)/η, (6.33)

f ′′ = f2(−3η − 3f + 3f3 + 5f2η + 2η2f)/η2. (6.34)

The first relation easily follows from (6.20) and the relation between η and
λ. Using these relations in εi, and eliminating the derivatives of previous
εj , it follows that we can write η2j−1εj as a polynomial in η, f, ε1. We have

12η3ε2 = +12 − 12f2 − 12fη − 12f2ηε1 − 12fη2ε1 − η2 − 6η2ε2
1, (6.35)

12η5ε3 = −30 + 12f2ηε1 + 12fη2ε1 + 24f2η3ε1 + 6ε3
1η

3 − 12f2 (6.36)

+ 31f2η2 + 72f3η + 42f4 + 18f3η3ε2
1 + 6f2η4ε2

1 + 36f4ηε1 + 60f3η2ε1

+ 12ε2
1η

3f + 12ε2
1η

2f2 − 12ηε1 + η3ε1 + fη3 − 12fη + 12ε2
1η

2f4,

The coefficients ε1, . . . , ε3 are bounded on R. To show this one needs

f(η) ∼ −η, η → −∞, f(η) ∼ 2η−1, η → +∞, (6.37)

and the above representations of εi. We find

ε1 ∼ ∓ ln |η|
η

, ε2 ∼ − 1

12η
, ε3 ∼ ε1

12η2
, (6.38)

as η → ±∞. In deriving the behaviour at −∞ one should take into account
that (see (6.20) and the relation between η and λ)

f(η) + η =
λη

λ − 1
∼ −ηe−

1

2
η2

, η → −∞. (6.39)

6.5. Expansions of the coefficients εi

As explained in Section 5.2, the function f is analytic in a strip |Im η| <√
2π, and it can be expanded in a Taylor series around the origin with radius

of convergence 2
√

π. All εi have similar analytic properties. That is, the
coefficients εi can be expanded in series as follows:

εi =
∞∑

n=0

ci,nηn, |η| < 2
√

π, i = 1, 2, 3, . . . . (6.40)

The representations of εi given in the previous section are not suitable for
numerical computation, first because of the appearance of derivatives of f
and εi, second because of the complexity of the expressions. Therefore, to
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facilitate numerical evaluations of ε1, . . . , ε3 we provide the following Taylor
expansions:

ε1 = −1
3

+ 1
36

η + 1
1620

η2 − 7
6480

η3 + 5
18144

η4 − 11
382725

η5 − 101
16329600

η6 (6.41)

+ 37
9797760

η7 − 454973
498845952000

η8 + 1231
15913705500

η9 + 2745493
84737299046400

η10

− 2152217
127673385840000

η11 + 119937661
30505427656704000

η12

− 449
1595917323000

η13 − 756882301459
4455179048226816000000

η14

+ 12699400547
153146779782796800000

η15 − 3224618478943
170264214140233973760000

η16 + · · · ,

ε2 = − 7
405

− 7
2592

η + 533
204120

η2 − 1579
2099520

η3 + 109
1749600

η4 + 10217
251942400

η5 (6.42)

− 9281803
436490208000

η6 + 919081
185177664000

η7 − 100824673
571976768563200

η8

− 311266223
899963447040000

η9 + 52310527831
343186061137920000

η10 + · · · ,

ε3 = 449
102060

− 63149
20995200

η + 29233
36741600

η2 + 346793
5290790400

η3 (6.43)

− 18442139
130947062400

η4 + 14408797
246903552000

η5 − 1359578327
129994720128000

η6

− 69980826653
39598391669760000

η7 + 987512909021
514779091706880000

η8 + · · · ,

6.6. Numerical examples

When p = q = 1
2 , the asymptotics are quite simple. Then η0 of (6.14) equals

zero, and from (6.28) and the expansions in the previous section we obtain
(6.16) and (6.17) in the form

η ∼ −1
3
a−1 − 7

405
a−2 + 449

102060
a−3 + · · · . (6.44)

In this case we give an expansion of the requested value x. Recall that
x = aλ and that λ can be obtained from the relation between η and λ in
(5.15) with η given by (6.44). Inverting

1
2
η2 = 1

2
(λ − 1)2 − 1

3
(λ − 1)3 + 1

4
(λ − 1)4 + · · · , (6.45)

we obtain

λ = 1 + η + 1
3
η2 + 1

36
η3 − 1

270
η4 + 1

4320
η5 + · · · . (6.46)

Substituting (6.44), we have

x ∼ a
(
1 − 1

3
a−1 + 8

405
a−2 + 184

25515
a−3 + · · ·

)
. (6.47)
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Table 6.2. Relative errors |xa − x|/x and |Q(a, xa) − q|/q for several values of q
and a; xa is obtained by asymptotic expansion (6.17), x is a more accurate value.

q a = 1 a = 5 a = 10

0.0001 2.310(−4) 2.110(−3) 1.110(−6) 1.610(−5) 9.410(−8) 1.710(−6)
0.1 6.610(−4) 1.510(−3) 2.010(−6) 9.310(−6) 1.410(−7) 8.810(−7)
0.3 8.710(−4) 1.010(−3) 2.310(−6) 6.410(−6) 1.610(−7) 6.010(−7)
0.5 7.010(−4) 4.810(−4) 6.710(−7) 1.210(−6) 5.410(−8) 1.410(−7)
0.7 4.910(−4) 1.710(−4) 2.710(−6) 2.610(−6) 1.710(−7) 2.610(−7)
0.9 1.910(−3) 2.010(−4) 2.510(−6) 8.810(−7) 1.810(−7) 9.310(−8)
0.9999 5.110(−3) 5.110(−7) 3.910(−6) 1.810(−9) 6.010(−8) 4.810(−11)

When a = 1, q = 1/2, the equations in (6.12) reduce to e−x = 1/2, with
solution x = ln 2

.
= 0.693147, while expansion (6.47) gives x ∼ 0.693631, an

accuracy of 3 digits. When a = 2, q = 1/2, the equations in (6.12) become
(1 + x)e−x = 1/2, with solution x

.
= 1.6783469; in this case our expansion

(6.47) gives x ∼ 1.6783461, an accuracy of 6 significant digits. This shows
that (6.47) is quite accurate for small values of the (large) parameter a.
Computer experiments show that for other q-values the results are of the
same kind. See Table 6.2.

In Table 6.2 we give more results of numerical experiments. We have
used (6.17) with three terms. The first column under each a-value gives
the relative accuracy |xa − x|/x, where xa is the result of the asymptotic
method, and x is a more accurate value obtained by Newton’s method. The
second column under each a-value gives the relative errors |Q(a, xa)− q|/q.

6.7. Generalizations

The method described in the previous sections can be applied to other
cumulative distribution functions. Consider the function

Fa(η) =

√
a

2π

∫ η

−∞
e−

1

2
aζ2

f(ζ) dζ, (6.48)

where a > 0 and η ∈ R. We assume that f is an analytic function in
a domain containing the real axis, and that f is positive on R with the
normalization f(0) = 1. In Temme (1982) it is shown that several well-
known distribution functions can be written in this form, including the
incomplete gamma and beta functions. It is also shown that the following
representation holds:

Fa(η) = 1
2
erfc

(
−η

√
a/2

)
Fa(∞) + Ra(η), (6.49)
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where Ra(η) can be expanded as in (5.16). Fa(∞) is the complete integral,
and can be expanded in the form

Fa(∞) ∼
∞∑

n=0

An

an
, as a → ∞, A0 = 1. (6.50)

By dividing both sides of (6.48) by Fa(∞), we obtain a further normaliza-
tion, which is typical for distribution functions.

The inversion of the equation Fa(η)/Fa(∞) = q, with q ∈ [0, 1] and a
a given (large) number, can be performed as in the case of the incomplete
gamma functions. As in (6.14), let η0 be the real number satisfying the
equation

1
2
erfc

(
−η0

√
a/2

)
= q. (6.51)

Then the requested value η is written as in (6.16), and an expansion like
(6.17) can be obtained by deriving the differential equation (6.24), with f
of (6.48) and Γ∗(a) replaced with Fa(∞).

6.8. High-order Newton-like methods

Special functions usually satisfy a simple ordinary differential equation, and
this equation can be used to construct Newton-like methods of high order.

Let f(z) be the function, the zero ζ of which has to be computed. We
put ζ = ζ0 + h, where ζ0 is an approximation of this zero and we assume
that we can expand in a neighbourhood of this point

f(ζ) = f(ζ0 + h) = f(ζ0) + hf1 +
1

2!
h2f2 +

1

3!
f3 + · · · , (6.52)

where fk denotes the kth derivative of f at ζ0. We assume that f(ζ0) is
small and we expand

h = c1f(ζ0) + c2f
2(ζ0) + c3f

3(ζ0) + · · · . (6.53)

Substituting this expansion into (6.52), using that f(ζ) = 0, and comparing
equal powers of f(ζ0), we find, when f1 �= 0,

c1 = − 1

f1
, c2 = − f2

2f3
1

,

c3 =
−3f2

2 + f3
3 f1

6f5
1

, c4 = −f4f
2
1 + 15f3

2 − 10f2f3f1

24f7
1

.

(6.54)

When we neglect in (6.53) the coefficients ck with k ≥ 2 we obtain Newton’s
method, with ζ=̇ζ0 − f(ζ0)/f ′(ζ0).

When f(z) satisfies a simple ordinary differential equation the higher
derivatives can be replaced by combinations of lower derivatives.
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Example 6.3. (The inversion of the incomplete gamma function)
In Section 6.2 we consider the inversion of the equations P (a, x) = p,
Q(a, x) = q, where 0 < p < 1, 0 < q < 1, for large positive values
of a. When a is small the asymptotic methods cannot be applied, al-
though for a = 1 the results can be used as a first approximation. We
take a ∈ (0, 1], f(x) = P (a, x) − p and an initial value x0 > 0. We derive
from f1 = f ′(x) = xa−1e−x/Γ(a) and (6.54) the values

c1 = −x1−a
0 ex0Γ(a), (6.55)

c2 =
x0 + 1 − a

2x0
c2
1,

c3 =
2x2

0 + 4x0(1 − a) + 2a2 − 3a + 1

6x2
0

c3
1,

c4 =
6x3

0 + 18x2
0(1 − a) + x0(18a2 − 29a + 11) − 6a3 + 11a2 − 6a + 1

24x3
0

c4
1.

For a = 1 the equation f(x) = 0 is simple, because P (1, x) = 1 − e−x and
the solution of f(x) = 0 is x = − ln(1 − p). The values ck are in this case
ck = (−1)kekx0/k, k = 1, 2, 3, . . . , and h of (6.53) becomes

h =
∞∑

k=1

ckf
k = − ln(1 + ex0f(x0)).

Using this value of h we obtain

x = x0 + h = x0 − ln(1 + ex0f(x0)) = − ln(1 − p), (6.56)

which gives the exact solution of f(x) = 0, for any x0 > 0.
For general a ∈ (0, 1] we derive a convenient starting value x0. We observe

that

P (a, x) =
1

Γ(a)

∫ x

0
ta−1e−t dt <

1

Γ(a)

∫ x

0
ta−1 dt =

xa

Γ(a + 1)
. (6.57)

Hence, the solution x0 of the equation xa = pΓ(a + 1) satisfies 0 < x0 < x,
where x is the exact solution of f(x) = 0.

The case a = 1/2 is of special interest, because P (1/2, x) = erf
√

x, the
error function; see also Section 6.1. For a numerical example we take p = 0.5.
We have x0 = π/16 = 0.196349540849362 and f(x0) = erf

√
x0 − 1/2 =

−0.030884051069941. Using the values values c1, c2, c3, c4 from (6.57), we
have h = 0.0311185517296367. This gives the new approximation x =̇ x0 +
h = 0.227468092579000 and with this value we have f(x) = −1.12 · · · 10−7.
It is easy to iterate and to obtain much higher accuracy.
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7. How to handle series with special functions

When we have solved the problem of writing good software for a class of
special functions for a wide range of the real or complex parameters, some
application problems remain unsolved. We consider two examples in which
special functions arise in representations of solutions of certain problems
from probability theory and mathematical physics. We consider one series
with incomplete gamma functions and one with modified Bessel functions.

7.1. The non-central chi-squared distribution functions

We start from Abramowitz and Stegun (1964, equation 26.4.25) and consider
for positive x, y, µ the non-central chi-squared distribution functions (which
are also called non-central gamma distributions)

Pµ(x, y) = e−x
∞∑

n=0

xn

n!
P (µ + n, y), Qµ(x, y) = e−x

∞∑

n=0

xn

n!
Q(µ + n, y),

(7.1)
in terms of the incomplete gamma functions, which are related to the stan-
dard chi-squared probability functions,

P (a, x) =
1

Γ(a)

∫ x

0
ta−1e−t dt, Q(a, x) =

1

Γ(a)

∫ ∞

x
ta−1e−t dt. (7.2)

Because P (a, x) + Q(a, x) = 1 we also have

Pµ(x, y) + Qµ(x, y) = 1. (7.3)

Integral representations in terms of modified Bessel functions follow from
replacing the incomplete gamma functions in (7.1) by their integral repre-
sentations, and by using

Iµ(z) =
(

1
2
z
)µ

∞∑

n=0

(1
2z)2n

Γ(µ + n + 1)n!
, (7.4)

which gives

Pµ(x, y) = e−x

∫ y

0

(
t

x

) 1

2
(µ−1)

e−tIµ−1(2
√

xt) dt, (7.5)

Qµ(x, y) = e−x

∫ ∞

y

(
t

x

) 1

2
(µ−1)

e−tIµ−1(2
√

xt) dt. (7.6)

The function Qµ(x, y) plays a role in physics and engineering, for instance
in problems on radar communications, where it is called the generalized
Marcum Q-function. In Marcum (1960) the function is considered with
µ = 1. The parameter µ is related to the degrees of freedom and y to the
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non-centrality. The recurrence relations of the incomplete gamma functions

P (a+1, x) = P (a, x)− xae−x

Γ(a + 1)
, Q(a+1, x) = Q(a, x)+

xae−x

Γ(a + 1)
, (7.7)

give the recursions

Pµ+1(x, y) = Pµ(x, y) −
(

y

x

) 1

2
µ

e−xIµ(2
√

xy), (7.8)

Qµ+1(x, y) = Qµ(x, y) +

(
y

x

) 1

2
µ

e−xIµ(2
√

xy). (7.9)

We can eliminate the Bessel function in (7.9) using Iµ−1(z) = Iµ+1(z) +
(2µ/z) Iµ(z). This gives the homogeneous third-order recurrence relation:

xQµ+2(x, y) = (x − µ)Qµ+1(x, y) + (y + µ)Qµ(x, y) − yQµ−1(x, y). (7.10)

Because a constant satisfies this equation, it also holds for Pµ(x, y).
By using the integral representation of the modified Bessel function (see

Abramowitz and Stegun (1964, 29.3.81))

(
z

x

) 1

2
(µ−1)

Iµ−1(2
√

xz) =
1

2πi

∫
esz+x/ss−µ ds, µ > 0, (7.11)

where the path of integration may be any vertical line in the half-plane
Re s > 0. The path may be deformed into a Hankel contour L shown in
Figure 3.1. Substituting the loop integral into the integral in (7.6), we
obtain

Qµ(x, y) =
e−x−y

2πi

∫ c+i∞

c−i∞

ex/s+ys

(1 − s)sµ
ds, 0 < c < 1. (7.12)

When we move the vertical line to the right, across the pole at s = 1, and
take into account the residue, we obtain

Pµ(x, y) =
e−x−y

2πi

∫ c+i∞

c−i∞

ex/s+ys

(1 − s)sµ
ds, c > 1. (7.13)

These representations are useful for deriving asymptotic expansions. In
problems in radar communications very large values of µ, x, y are used, say,
about 10,000. Asymptotic analysis shows a transition when y passes the
value x + µ. There is a fast transition from 0 to 1. In fact we have

Qµ(x, y) ∼





1 if x + µ > y,
1
2 if x + µ = y,

0 if x + µ < y,

(7.14)

and complementary behaviour for Pµ(x, y) = 1 − Qµ(x, y).
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In Temme (1993, 1996) details can be found on two types of asymptotic
approximations, one for x and y large, with µ fixed, and one for all parame-
ters large. In both approximations the complementary error function is used
that describes the transition from 0 to 1, as shown for Qµ(x, y) in (7.14).

Numerical aspects

In applications it is of interest to have available algorithms for Qµ(x, y)
when 0 < Qµ(x, y) ≤ 1

2 (see (7.14)) and for Pµ(x, y) otherwise.
The recurrence relation (7.9) is useful for computing Qµ(x, y). It is nu-

merically stable in the forward direction, since the right-hand side of (7.9)
has positive terms. An algorithm for the modified Bessel function is needed.
A point of warning: the recurrence relation for the modified Bessel function
should not be used in the forward direction: see Example 4.2.

Observe that the function Pµ(x, y) satisfies the recursion

Pµ(x, y) = Pµ+1(x, y) +

(
y

x

)µ/2

e−xIµ

(
2
√

xy
)
, (7.15)

which is stable in the backward direction.
In the homogeneous recurrence relation (7.10) Bessel functions do not

occur. It is attractive to use this equation for Pµ(x, y) and Qµ(x, y) in
order to avoid the recursion of the Bessel functions. However, one needs to
investigate the stability of (7.10) in more detail, and for several combinations
of the parameters. We know three linearly independent solutions: Pµ(x, y),
Qµ(x, y) and the constant function (with respect to µ). This indicates that
it may be stable for Qµ(x, y) in the forward direction and for Pµ(x, y) in
the backward direction.

For small and moderate values of x, y, µ the expansions in (7.1) can be
used. Both series have positive terms and both series require the evaluation
of one incomplete gamma function. The series for Qµ(x, y) requires the
value Q(µ, y), and the remaining terms follow from the stable recursion in
(7.7) for Q(a, x).

The series in (7.1) for Pµ(x, y) requires an initial value of P (a, x). The
recursion in (7.7) should be used in the backward direction. Let n0 be the
(smallest) number such that

Pµ(x, y)
.
= e−x

n0∑

n=0

xn

n!
P (µ + n, y), (7.16)

within the required relative accuracy. Then as starting value we need to
compute P (µ + n0, y), and the remaining values follow from the recursion
in (7.7) for P (a, x). To estimate n0 we use

P (µ + n, y) ∼ yn+µe−y

Γ(µ + n + 1)
, µ + n → ∞. (7.17)
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Table 7.1. The number n0 is as in (7.16), or a similar series for
Qµ(x, y); µ = 8192, y = 1.05µ; the relative accuracy is 10−10.

x/µ n0 Qµ(x, y) Pµ(x, y)

0.01 150 1.98452780310(−04) 9.99801547210(−01)
0.03 355 4.00036497010(−02) 9.59996350310(−01)
0.05 543 4.98535453610(−01) 5.01464546410(−01)
0.07 727 9.55657341810(−01) 4.43426582510(−02)
0.09 894 9.99624972410(−01) 3.75027616410(−04)
0.11 1054 9.99999718810(−01) 2.81186438410(−07)
0.13 1207 1.00000000010(−00) 1.99969451510(−11)

For obtaining relative accuracy, we need an estimate of Pµ(x, y). One can
use the value of the integrand of (7.5) at t = y, that is,

Pµ(x, y) ∼
(

y

x

) 1

2
µ

e−x−yIµ(ξ), ξ = 2
√

xy, (7.18)

and we replace Iµ(ξ) by the dominant part of the uniform asymptotic ap-
proximation (Abramowitz and Stegun 1964, equation 9.7.7). That is, we
replace Iµ(ξ) by eµη, where

η = coth γ − γ, γ = arcsinh
µ

ξ
. (7.19)

Combining these estimates, and using the dominant factor in Stirling’s ap-
proximation of the gamma function, we infer that the equation

e−xxnP (µ + n, y)

n!Pµ(x, y)
= ε (7.20)

can be replaced by the equation

n log
n

ex
+(µ+n) log

µ + n

ey
+µ

(
1
2
log(y/x)+coth γ−γ

)
+log ε = 0. (7.21)

The left-hand side assumes a minimal value at n = 1
2ξ exp(−γ). A Newton

process (a safe starting value is ξ exp(−γ)) gives the desired values of n,
which is taken as the number n0 in (7.16).

Table 7.1 shows the number of terms n0 used in the series in (7.16), or a
similar series for Qµ(x, y), for several values of x. In all cases µ = 8192, y =
1.05µ. These numbers are as in Robertson (1969, Table I). For larger values
of the parameters the computation can be based on asymptotic expansions,
in particular when y ∼ x + µ. For these expansions we refer to Temme
(1993, 1996).
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7.2. A series of modified Bessel function

In the well-known Fourier series (see Abramowitz and Stegun (1964, equa-
tion 9.6.34))

ez cos θ = I0(z) + 2
∞∑

n=1

In(z) cos nθ (7.22)

the Bessel coefficients are large when Re z is large and positive. We have

Iν(z) ∼ ez

√
2πz

, Re z → +∞. (7.23)

When cos θ < 0, the left-hand side in (7.22) is very small when Re z →
+∞. Hence a lot of cancellations occur in the series, and from a numerical
point of view the summation of the series is a very unstable process. The
same happens in the simpler expansion ex =

∑n
n=0 xn/n! when x is a large

negative number.
In a more general Fourier series

a0I0(x) + 2
∞∑

n=1

anIn(x) cos nθ, (7.24)

where an is slowly varying when n is large, the same instabilities may occur,
and in the numerical evaluation for large positive x and cos θ < 0 of such a
series serious problems arise.

We have met such a series when solving a singular perturbation problem
inside a circle. The equation is a second-order elliptic equation with a small
parameter multiplying the Laplace operator and reads

ε

(
∂2Φ

∂x2
+

∂2Φ

∂y2

)
− ∂Φ

∂y
= 1, x2 + y2 < 1, (7.25)

with boundary condition

Φ(cos θ, sin θ) = 0 (7.26)

on the boundary of the circle r = 1. We use polar coordinates

x = r cos θ, y = r sin θ. (7.27)

By separating the variables, using the differential equation of the modified
Bessel function, and the series in (7.22) for fitting the boundary value, we
obtain

Φ(x, y) = −y − eωr sin θ
∞∑

n=−∞

I ′n(ω)

In(ω)
In(ωr) cos n(θ + π/2), (7.28)

where ω = 1
2ε .
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Figure 7.1. Boundary layer inside the circle along the
upper boundary r = 1, y > 0 and near the points (±1, 0).

When ε → 0 the second-order elliptic operator in (7.25) reduces (in the
limit ε = 0) to a first-order operator. The solution of the reduced equation
cannot satisfy the boundary condition on the whole circle. For small values
of ε the solution behaves like (the first-order operator in (7.25) has the
upper hand)

Φ(x, y) ∼ w0(x, y), w0(x, y) = −y −
√

1 − x2, (7.29)

which indeed solves the first-order part of the equation (7.25), and fits the
boundary condition at the lower side of the circle, but not at the upper
side. There is a sudden change from regular behaviour inside the circle to
steep behaviour at the upper side of the circle. At this part of the circle a
boundary layer occurs: see Figure 7.1. The boundary layer occurs at the
upper part of the circle, and not at the lower part of it. This is because the
linear operator in (7.25) has a minus sign.

It is quite easy to solve the singular perturbation problem in the lower
part of the disk by using the singular perturbation method (cf. for instance
Eckhaus and de Jager (1966)) When we substitute the formal series

Φ(x, y) ∼
∞∑

n=0

εnwn(x, y) (7.30)

into (7.25) and equate equal powers of ε, we find

∂w0(x, y)

∂y
= −1,

∂wn(x, y)

∂y
= ∆wn−1(x, y), n = 1, 2, . . . , (7.31)

and all wn should vanish on the lower part of the unit circle. This gives w0
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as in (7.29) and

wn(x, y) =

∫ y

−
√

1−x2

∆wn−1(x, η) dη, n = 1, 2, . . . . (7.32)

It is easily verified that

w1(x, y) =
y + R

R3
, w2(x, y) =

y + R

2R7

(
3y + 12yx2 + R

)
, (7.33)

where R =
√

1 − x2. We observe that these wn become singular at the
points (±1, 0) and that they do not satisfy the boundary condition wn = 0
on the upper part of the unit circle. An expansion like (7.30) is called an
outer expansion, because it is valid outside the boundary layer.

To satisfy the boundary conditions along the upper part of the unit cir-
cle the inner expansion is constructed with so-called boundary layer terms.
These functions have the property of being of order O(εn) for all n every-
where inside the unit circle, except for a small neighbourhood of the upper
part of the circle. Following the construction of the boundary layer term
given in Eckhaus and de Jager (1966), we can write in first approximation

Φ(x, y) = −y −
√

1 − x2 + 2 sin θ e−
1

ε
(1−r) sin θ ψ(x, y) + z0(x, y, ε), (7.34)

where z0(x, y, ε) = O(ε), uniformly inside the unit disk, with the excep-
tion of small neighbourhoods of the points (±1, 0). The function ψ is a
C∞-function, a smoothing factor, on the disk, which equals unity on a
neighbourhood of the upper part of the circle, say the domain given by
2
3 < r ≤ 1, y > y0, where y0 is a fixed positive small number, and ψ vanishes
in the lower part of the disk.

It is not possible to describe with simple expansions the behaviour of
the solution Φ(x, y) near the points (±1, 0). At these points the character-
istics of the linear operator touch the boundary of the domain, and it is
known that the boundary layers near these points are rather complicated;
see Grasman (1971) and Eckhaus and de Jager (1966).

Our interest in this type of simple equations is the following.

(1) Can we find the outer expansion given in (7.30) directly from the exact
solution given in (7.28)? Observe that it is quite simple to construct
this expansion by using perturbation analysis.

(2) Can we find the inner expansion directly from the exact solution that
holds near the upper part of the unit circle? Although it is more
complicated than for the outer expansion, the construction of the in-
ner expansion is quite straightforward by using singular perturbation
analysis.
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(3) Even more challenging, can we find approximations that are valid near
the points (±1, 0)?

(4) Can we use the exact solution given in (7.28) to compute the solution
in all parts of the unit disk when ε ↓ 0 with high accuracy? This is
of interest for research in numerical methods for singular perturbation
problems when numerical algorithms for more general problems need
test problems with known exact solution, and where the test problems,
although being quite simple, contain essential difficult elements for
numerical and asymptotic analysis.

The first two points are considered in a recent paper, Temme (2007). It
turns out that the asymptotic analysis can be based on transforming the
series by means of the Poisson summation formula (3.50) of which the first
term is an integral with respect to the order of the modified Bessel function.
By using certain asymptotic approximations of the Bessel functions we can
obtain the outer expansion from this first term.

8. Software for computing special functions

• For web links to software packages for evaluating special functions we
refer to the repository GAMS: Guide to Available Mathematical Soft-
ware, http://gams.nist.gov/.

• In 1994 a complete survey of the available software was published:
Lozier and Olver (1994). The latest update of this project appeared in
December 2000.
See http://math.nist.gov/mcsd/Reports/2001/nesf/paper.pdf.

• Many interactive systems based on computer algebra, such as matlab,
Maple, and Mathematica, have a vast collection of special functions,
for symbolic and numerical purposes.

• Mathematical libraries: NETLIB, SPECFUNC, CALGO, SLATEC,
CERN, IMSL, NAG. Some are available on a commercial basis, whilst
others are available free (consult the GAMS repository). See also the
software published in the journals Computer Physics Communications

and Applied Statistics.

• Books, usually with software: Baker (1992), Moshier (1989), Press,
Teukolsky, Vetterling and Flannery (2002), Thompson (1997), Wang
and Guo (1989) and Zhang and Jin (1996).
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9. Concluding remarks

This paper deals with special functions that can be represented by an in-
tegral, a differential or difference equation, or by other standard ways. We
focus on the functions that are useful in applications and we forget about
the more exotic functions such as the Fox H-function, the Meijer G-function,
and so on, which may be useful in certain analytic descriptions, but are too
general to handle from a numerical point of view.

Also, my choice of the numerical aspects is rather personal, and frequently
based on my experience in complex analysis and (uniform) asymptotic ap-
proximations. Many other topics are left out, such as continued fractions,
best rational approximations, Padé-type approximations, sequence trans-
formations, to name a few, not because they are not of mathematical or
computational interest, but simply as a matter of selection for the present
paper.

Acknowledgements

The author acknowledges financial support from the Spanish Ministry of

Education and Science (Project MTM2004–01367).
The author thanks SIAM, the Society for Industrial and Applied Mathe-

matics, for allowing this paper to share several topics, parts, and examples
in common with the book entitled Numerical Methods for Special Func-

tions written by Amparo Gil, Javier Segura, and the present author, to be
published by SIAM in 2007.

REFERENCES

M. Abramowitz and I. A. Stegun (1964), Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables, Vol. 55 of National Bureau of

Standards Applied Mathematics series, US Printing Office.
G. E. Andrews, R. Askey and R. Roy (1999), Special Functions, Vol. 71 of En-

cyclopedia of Mathematics and its Applications, Cambridge University Press,
Cambridge.

L. Baker (1992), C Mathematical Function Handbook: Programming Tools For

Engineers and Scientists, McGraw-Hill, New York.
W. G. Bickley, L. J. Comrie, J. C. P. Miller, D. H. Sadler and A. J. Thompson

(1952), Bessel Functions, Part II: Functions of Positive Integer Order, Vol. X
of British Association for the Advancement of Science, Mathematical Tables,
Cambridge University Press, Cambridge.

J. M. Blair, C. A. Edwards and J. H. Johnson (1976), ‘Rational Chebyshev ap-
proximations for the inverse of the error function’, Math. Comp. 30, 7–68.

M. Blakemore, G. A. Evans and J. Hyslop (1976), ‘Comparison of some methods for
evaluating infinite range oscillatory integrals’, J. Comput. Phys. 22, 352–376.

N. G. de Bruijn (1981), Asymptotic Methods in Analysis, 3rd edn, Dover, New
York.



Numerical aspects of special functions 475

W. Bühring (1987), ‘An analytic continuation of the hypergeometric series’, SIAM

J. Math. Anal. 18, 884–889.
W. W. Clendenin (1966), ‘A method for numerical calculation of Fourier integrals’,

Numer. Math. 8, 422–436.
C. W. Clenshaw (1957), ‘The numerical solution of linear differential equations in

Chebyshev series’, Proc. Cambridge Philos. Soc. 53, 134–149.
P. J. Davis and P. Rabinowitz (1984), Methods of Numerical Integration, Academic

Press, Orlando, FL.
A. Deaño and J. Segura (2007), ‘Transitory minimal solutions of hypergeometric

recursions and pseudoconvergence of associated continued fractions’, Math.

Comp. 76, 879–901.
W. Eckhaus and E. M. de Jager (1966), ‘Asymptotic solutions of singular perturba-

tion problems for linear differential equations of elliptic type’, Arch. Rational

Mech. Anal. 23, 26–86.
N. Eggert and J. Lund (1989), ‘The trapezoidal rule for analytic functions of rapid

decrease’, J. Comput. Appl. Math. 27, 389–406.
S. Elaydi (2005), An Introduction to Difference Equations, Undergraduate Texts

in Mathematics, 3rd edn, Springer, New York.
D. Elliott (1998/99), ‘Sigmoidal transformations and the trapezoidal rule’, J. Aus-

tral. Math. Soc. Ser. B 40, E77–E137 (electronic).
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